
V Y

Evaluation of the SimForest Inquiry Learning Environment

Tom Murray, Neil Stillings, Larry Winship Hampshire College, Univ. of Massachusetts

simforest.hampshire.edu tmurray@cs.umass.edu helios.hampsire.edu/~tjmCCS/

Supported by NSF CCLI grant # DUE-9972486 and NSF LIS grant # REC-9720363

SimForest Project

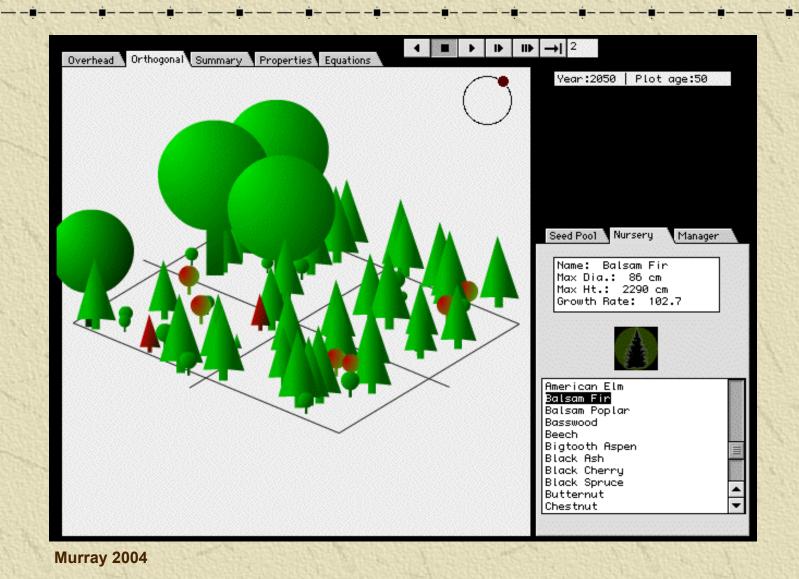
- Learning goals: inquiry skills; botany/ecology; epistemology/beliefs about science
- Grades: 7-12, undergrad (& graduate)

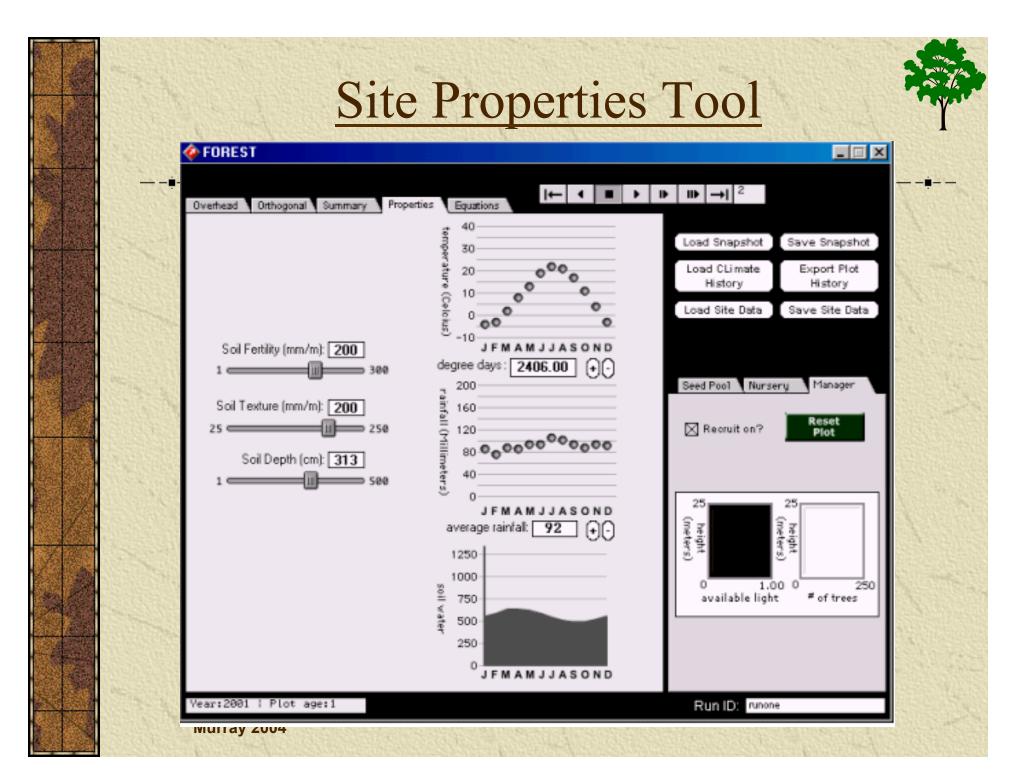
Project Phases:

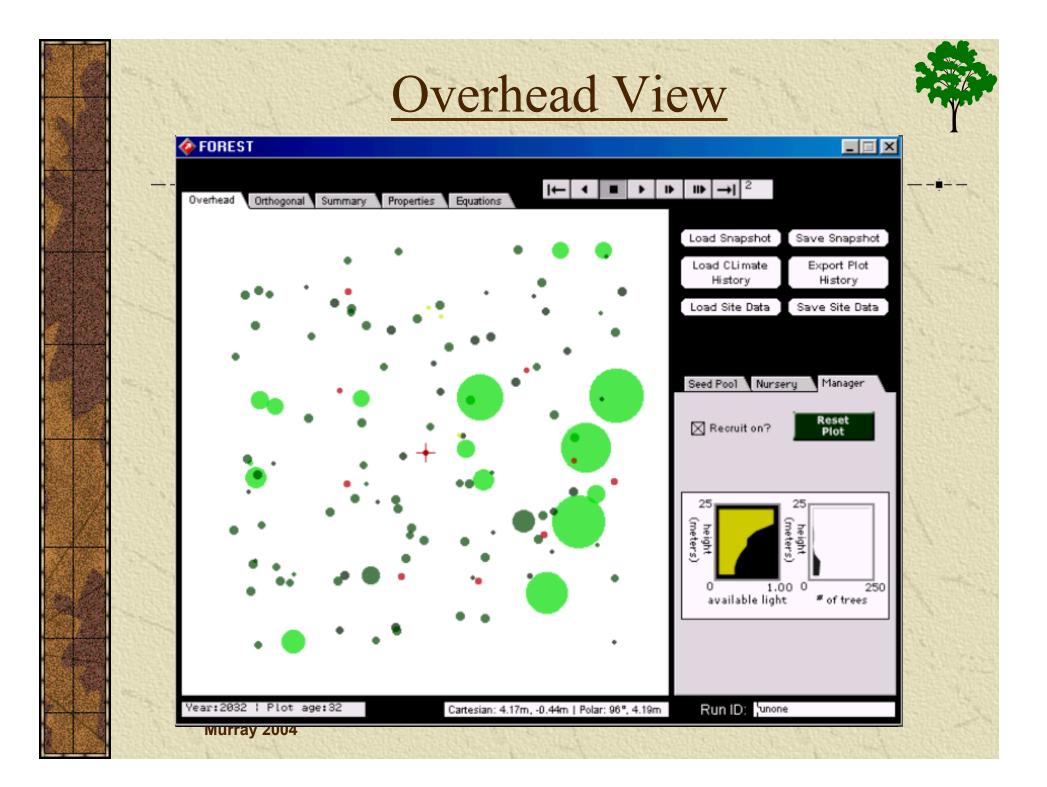
- 1. Software development
- 2. Class and lab tests with undergraduates
- 3. Curriculum Development
- 4. Teacher Education (Summer Institute)
- 5. Classroom support and assessment
- Evaluation: inquiry skills; teaching methods, professional development
- Glass-Box version of SimForest (prototype)

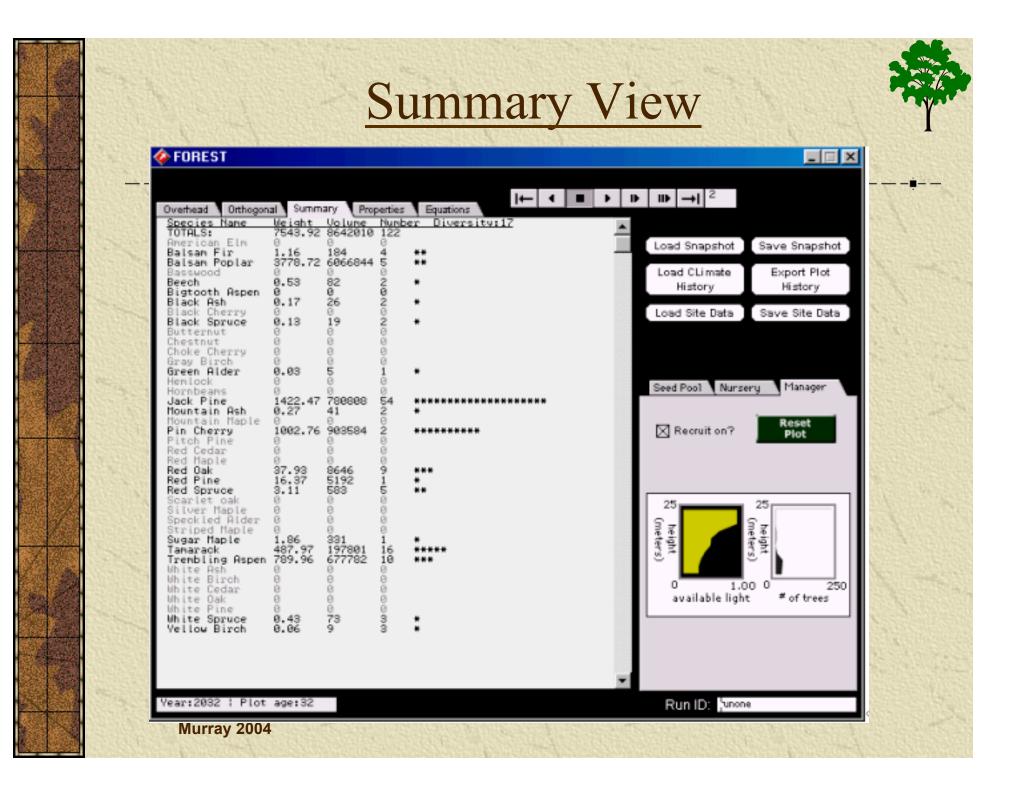
SimForest Project Evaluations

- Undergrad: 51 college students;
 14 instructional sessions of 1-2 hours ea.
 - Inquiry cycle and sub-skill analysis in one activity
 - Instructional cycles: multiple activities during a class
 - Analysis of expert teacher "best practice"
- Middle school students:
 - Inquiry skill improvement (pre/post test)
- Middle school teacher professional development
 - Lessons learned
 - Case studies

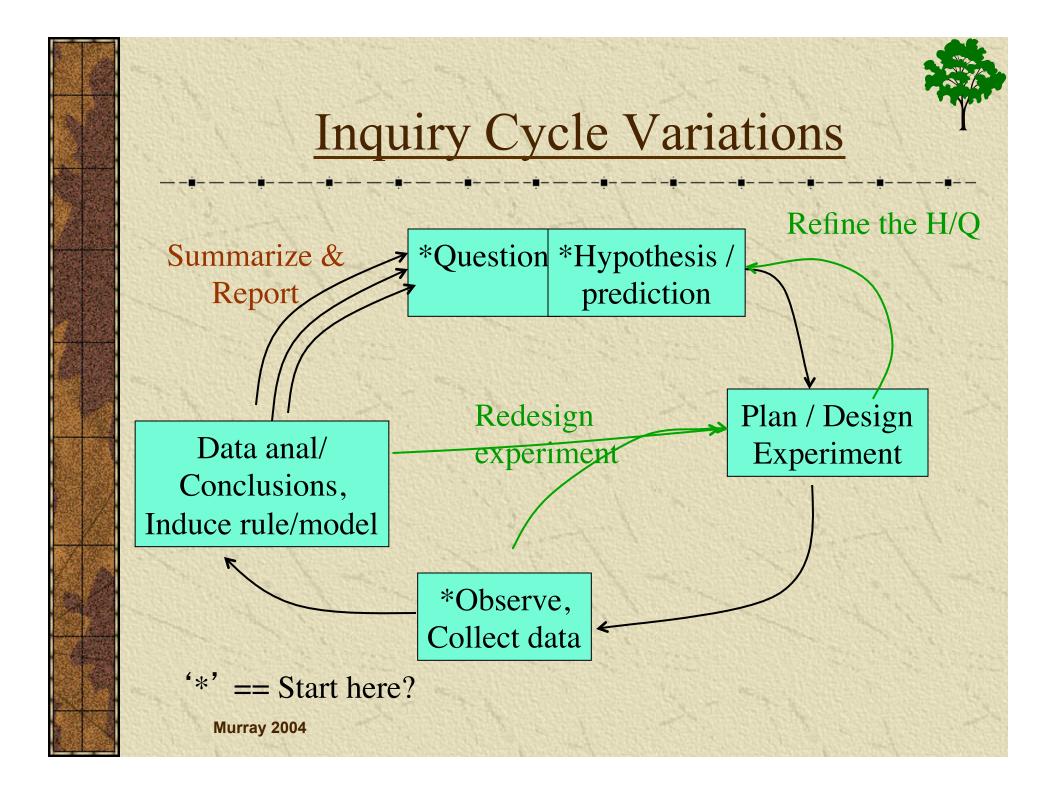

Overview:


focus on college trials


- * 1. Characterization of the inquiry process while using SimForest
 - A. Do we observe inquiry sub-skills?
 - B. How long are inquiry cycles?
 - C. How many inquiry cycles in a typical class?
 - Reason: pilot some new evaluation methods, get rough estimate of time-factors
- Characterize some "best practice" classroom methods for using inquiry-based learning environments.


Murray 2004

SimForest Demonstration



Tracking the inquiry cycle

(from video tape analysis)

Episode>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
SESSION A:																														
Ask question		x																												
Refine question		x																												
Make hypothesis			x																											
Plan experiment				×																										
Set-up experiment					x					x				x				x												
Run Simluation						x					x				x				x			x								
Record data																														
Verbal observations							x					x				x				x			x							
Refine Method									x				x				x													
Data analysisi	x							x													x			x						
Summarize																									x					
SESSION B:																														
Ask question	x															x														
Refine question																														
Make hypothesis										x							x													
Plan experiment																		x												
Set-up experiment																			x											
Run Simluation		x			x			x				x								x			x				x			
Record data																														
Verbal Observations			x			x			x				x								x			x				x		
Refine Method				×			x				x											x				x				
Data analysisi														x											x				x	
Summarize															x															x

Murray 2004

Evaluating Inquiry Cycles

* 1. Video tape analysis of student pairs
* 2. "Ethnographic" style observation/ analysis of classroom teaching

Inquiry Cycle Results

- * Local (inquiry sub-skills): Average cycle about 10 minutes; partial and sub-cycles observed
- Global (several activities per class): 1.5 hour class; ave. of 4 cycles; ave.20 minutes each
 - Cycles of convergent and divergent work
- ✤ 10-35 min. activities with 2-4 inq. Cycles
- * Students did ave. of 3 cycles per activity
- Measure of scaffolding/freedom
- * * Many more cycles than "wet labs"

<u>Characterizing best-practice</u> <u>classroom methods:</u>

Scaffolding individual students (and entire class)

Scaffolding collaborative inquiry & problem solving

<u>Characterizing best-practice classroom methods</u> <u>Collaborative inquiry & problem solving</u>

- * Alternating convergent & divergent activities -- individual/ group and whole-class
- Additive knowledge -- class given same open ended task, e.g. "run the simulation and note what you observe;" reconvenes & compare, synthesize
- Multiple student-created tasks -- ea. student/group poses question; reconvene for breadth in issues discussed; e.g. What happens if there is global warming of 3 degrees?
- Collaborative hypothesis confirmation groups test alternate student hypotheses; e.g. "I think rain is good for oaks"
- **Unsystematic exploration** -- explore a parameter space randomly sampling values; e.g. What makes white maples grow?
- Jigsaw method (state space search) -- e.g. systematic exploration of a multi-variable space of temperature, soil quality, and rainfall

Other observed classroom tactics

- *** Leading questions** and Socratic dialog
- **Emergent curriculum** and question/need-based dialog
- * Pre-telling ("you will soon discover that..."), pre-asking ("How can we answer this question using the simulation?"), post-telling ("what you just learned is..."), and post-asking ("What can we learn from what we just saw?")
- * Opportunistic flow of activities. Dynamically creating or choosing activities based on the following: student questions, student need to know, results of a previous activity, and unexpected problems with the software.
- Committing to a hypothesis. Asked students to pose a hypothesis or guess at an answer before starting an investigation.
 Murray 2004

SimForest Characteristics & Issues

- Rich context for many types of activities, questions, students: age, topic, background...
- * Relates to experience and authentic curiosity
- Multiple dependent & independent variables
 - Allows focus on many inquiry sub-skills
 - Can generate rich hypothesis & personally relevant hypotheses
 - What/how to measure/observe?
 - Observation skills; diff between observation and inference

Pedagogy Guidelines

- Start outside! -- connect with real trees
 Make predictions & debate
 Alternate convergent and divergent activities:
 - Free play with simulation
 - Solicit Qs
 - Open inquiry --> regroup & summarize
 - Systematic inquiry (jigsaw method)

Sample Lesson:

How does temperature affect...?

3.2		
	Goals	Other Questions
1	Students will beable to describe the effect sof	How does the composition of a forest change with a decrease in temperature? Is
	temperature on aforest's , as it is	there and increase or decrease in diversity?
	demonstratel in SimForest.	
		How does the composition change with an increase in temperature? Is there an
	Students will beable to design experiments to	increæe or decrease in diversity?
1	predict possible effects of on New England forests, using SimForest.	How might global warming affect local forests?
	New England foress, using Simpores.	How mgnugiobal warming allectrocal bresis?
12 1 1 2	Students will beable to compare and contrast different predictions (simulated by SimForest) of the effects of global warming.	Which New England species would be lost if the temperature rose 2 degrees, 4 degrees, 10 degrees?
		Does the speed of the warming matter?
1225		One concern about global warming is that the temperature will increase more quickly than the seeds of southerly species can migratenorth. How could you model this using SmForest?
1	Teaching Time and Dealing und	

Teaching Tips and BackgundInformation

The first two questions in the other questions list deal purely with examining the effects of temperature on forest composition and diversity and involve relatively simple manipulations of the temperature graph.

Subsequent questions become more complicated, which is fitting as they involve a complicated issue, Global Warming. The questions listed here are examples of the types of questions that could be explored using SimForest within the topic of global warming. We do not expect that any group of students would investigate all of them.

You may want to provide students with scientific literature on global warming so that they will have something on which to base their experimental design.

There are a number of ways to structure an investigation of global warming using SimForest. For example, students could

- Begin with an empty plot and compare a plot grown in current local conditions to a plot grown in warmer conditions.
- Begin with a climax forest grown in current, local conditions, increase the temperature once, and then observe how the forest changes (and compare this to the way that the forest changes after reaching climax if the temperature does not increase).

...(cont...)

Murray 2004

A-la-carte Lesson Outlines

***** Give teachers suggestions and resources-let them modify/reconstruct lessons to: Student grade/academic level Previous knowledge Classroom dynamics and learning styles Topical context (e.g. location, season, travel...) * Table of concepts/skills vs. lessons * List objectives & student inquiry Qs

Selected Curriculum Lessons

*-- Unit One: Tree Trunks Leaves and Branches----

- How Does a Tree Make Wood?
- If Wood is Made of Sugar, Why Can't We Eat It?
- How Old Is a Tree's Trunk?
- [....]

***** Unit Two: Trees in the Forest

- How Do You Measure the Size of a Tree?
- How Do You Map a Plot?
- [....]

***** Unit Three: Forest Growth and Change

- How Does a Forest Change Over Time?
- Does the Simulation Always Yield the Same Results?
- Can We Simulate the Plot We Surveyed?
- How Does Temperature Affect Forest Composition?
- How Do Human Made Disturbances and Management Techniques Affect Forests?
- How Do "Natural" Disturbances Affect Forests?
- Is the Simulation Valid?

Three Evaluation Transfer Tasks: Worms, Fish, & Flowers

- Description of situation and question
- 1. State a prediction
- 2. Describe an experiment
- 3. Reflect on the experiment
- 4. Construct a graphical representation of the prediction
- 5. Reflect on uncertainty in science
- 6. Critique an experimental design

A. Stating a prediction

***** Implicit or no prediction

- I think that earthworms prefer most soil rather than dry soil
- Clear relationship between two variablesI think that the more water, the more worms

Coding Rubric:

Step B Describe your experiment

- a) Systematic variation of the independent variable.
- b) Measures the dependent variable.
- c) Holds other things constant.
- d) Is feasible to do.
- e) Is specific and quantitative (measure how often; how many fish?).
- f) Deals with random variation (n>1, e.g. ave. over 10 fish in each tank; ave. over repeated experiment)

B. Describing an experiment

- Weaknesses in manipulation of independent variable or measurement of dependent variable
 - Independent: Get ... a square container ... fill it with dirt ... add lots of water to one side & none to the other. Put a few worms on each side.
 - Dependent: See which side they like better.

Experiment (continued)

Systematic manipulation of independent variable. Clear measurement of dependent variable. Fairly unreflective about control. Don't score unfeasibility.

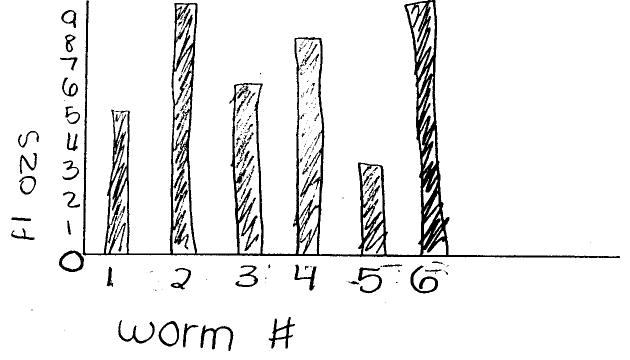
Get 3 boxes ... fill 1st with 300 ml of water, 2nd 500 ml, & 3rd with 1 L. ... pour dirt into each box ... put 20 worms in each ... wait 1 month and see how many worms are still alive.

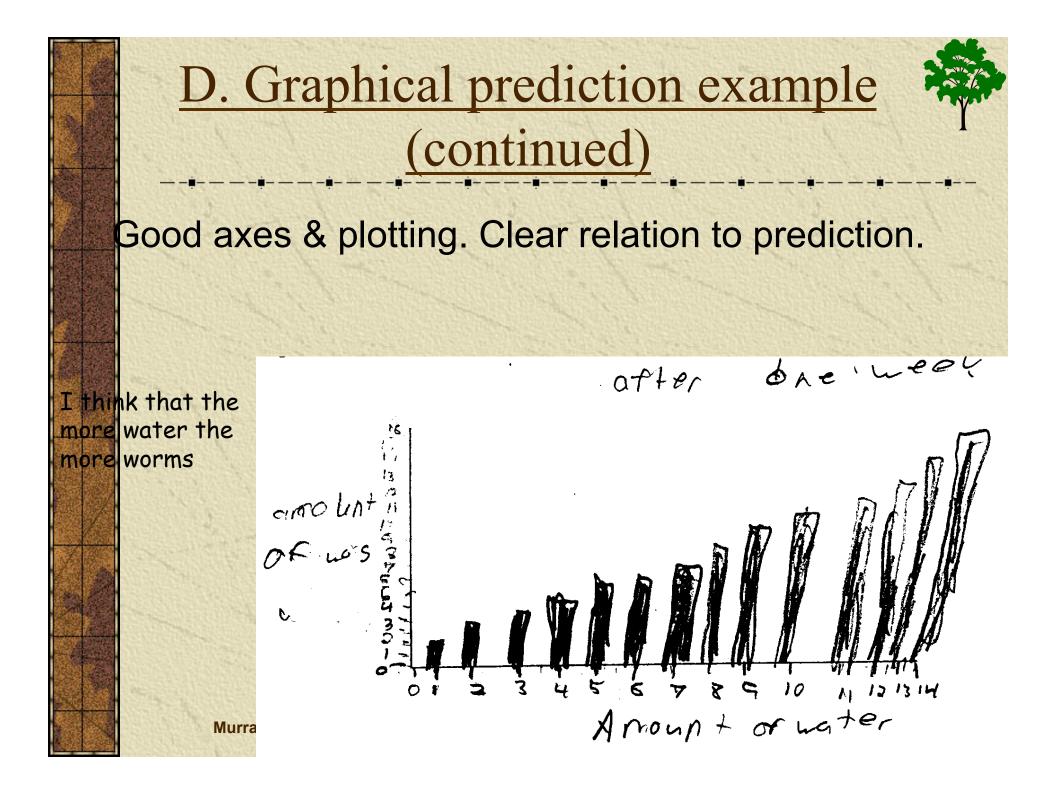
C. Reflecting on experiment

** No explicit reference to general principles, i.e. no evidence of metacognition. [Note that the writing is excellent here.]

• My experiment is a good way to test my prediction because it clearly shows if the worms prefer dry, moist, or really wet soil.

Some reference to general principles; some evidence of metacognition. [Note the experimental design here is not the best.]


Reflection (continued)


 My experiment is a good way to test my prediction because it is using two similar pots, each with a different amount of water. This variable can help you to determine if your hypothesis is correct by testing the final outcome under different conditions.

D. Graphical prediction example

Problems with correspondence to prediction, axes, or data plotting

I think that the more water, the more worms

E. Reflecting on uncertainty

- * Not very explicit. Not more than one or unusual other variable mentioned. General principles not mentioned.
 - Maybe some of the worms did not need that much water.

-----<u>Uncertainty (continued)</u>

Clear mention of other variable(s).
 Mentions measurement error or random variation in a reflective way. Mentions general principles.

- You could have used different soil or but you could have had different lighting
- The surrounding temperature could have been different, and more or less water could have evaporated.

F. Confounded experimental design

Amount Of Water (Liters)	Amount of Clay (Kilograms)	Number of Worms
2	1	20
4	5	40
6	9	60
8	13	80
10	17	40
12	21	10

Task F data

* No one sees the confounded variables

- I don't think it dropped from 40 to 10. And they should redo the last part of the experiment.
- I thought that there was no problem. The did show the amount of water clay and worms.
- I think the problem is that they' re putting in too much water. It might drown the worm. You could fix this be stopping after 8 liters.

Prof. Devel. Lessons Learned

- Resource-focus: a-la-carte lesson outlines
- Plenty of time to PLAY with simulation
- Talk about what and how they teach
- Too BUSY to spend much time on email
 - meetings were important
- Address state science frameworks
- Time during institute to work on lessons
- Lessons: Demonstrate -> Create
 -> Pilot -> Discuss

Murray 2004

Learning Goals

Higher order skills Inquiry skills Modeling concepts * Content concepts, facts Botany (trees) Ecology (forests) * Attitudes and scientific epistemology Computer simulations in society: approximate How scientists use complex simulations

Factors making

curriculum adoption difficult

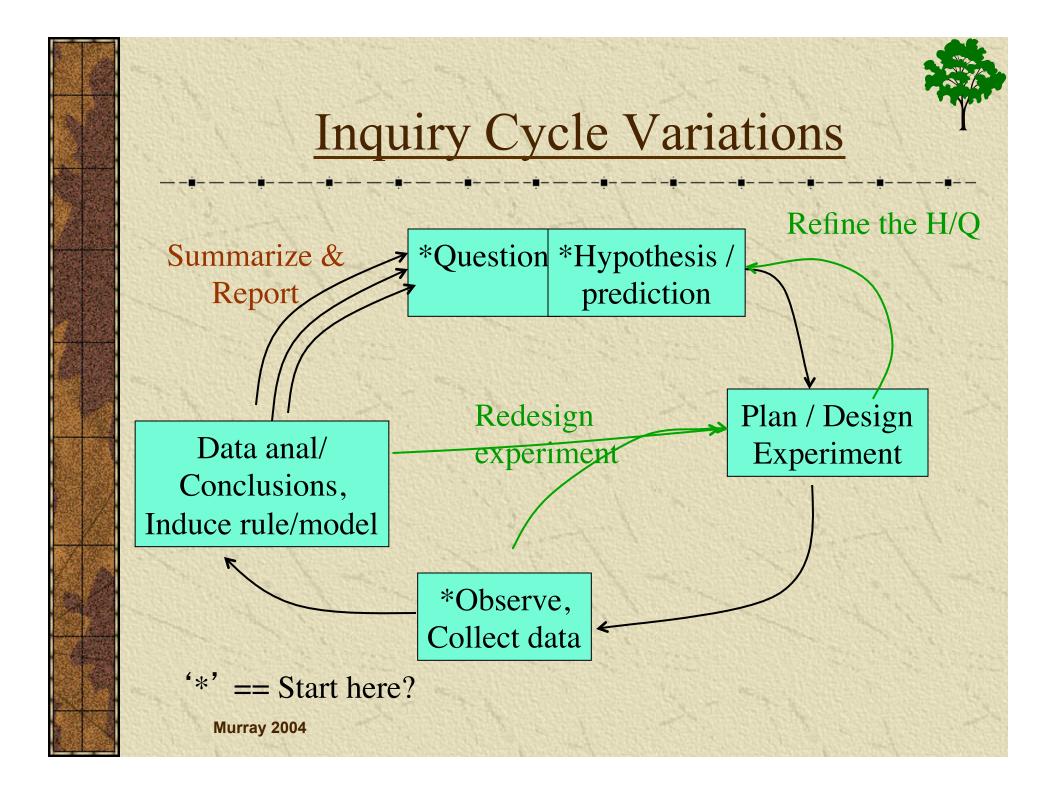
- State frameworks
- ***** MCAS
- Demand from administration
- Demographics of school
- Class structure, academic level of students
- Length of class time
- Number of meetings per week
- Number of students in class
- * Accessibility to computers, class time etc.
- Timing—does it fit into unit?
- Student motivation and interest
- Student learning
- Ease of activity to prepare
- * Comfort and ability of the teachers' understanding of subject
- Creating real behavioral and understanding improvements in teachers through hands on Professional Development workshops

Murray 2004

Teacher Training and support * 1 week summer institute in 2001 * 8 participants: grades 7-11 (6 schools) ♣ 6 science teachers, 2 ed-tech teachers **#** Fall 2001 & spring 2002; 2 or 3 3-5 day lessons ***** Stipends and P.D.P.s ***** Web site; email list * 4-hour Saturday meetings every 3 months ***** Classroom observations and feedback

Summary of Data Types

- * Teacher Questionnaires: Pre SI, Post SI, January Meeting
- **Baily Session Evaluations:** During Summer Institute
- * Personal Interviews: Pre Institute, During Institute, Post Institute
- * Teacher Journals: Written after each class they taught on SimForest
- *** Teacher Retrospectives**: Written at the end of their unit
- Classroom Observations: Conducted by myself and Tom Murray
- *** Informal Conversations**: From ongoing dialogue with myself and the teachers

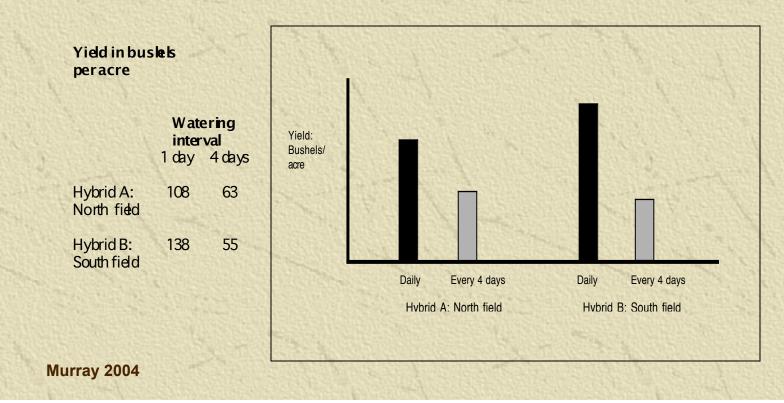

Teacher Questionnaire

Given Pre SI, Post SI, Jan 2002, (Nov 2002) Scale: 1. High, 2. Good, 3. Moderate, 4. Low, 5. Poor

Teaching scientific inquiry skills (in general)
 Using simulation-based software in your classes (in general)
 Teaching botany and ecology content related to your classes
 Designing and using student assessments in your classes.
 Using SimForest in my classes
 Using or Adopting SimForest curriculum for my classes

For each above rate;

- A . Comfort & Confidence
- B. Understanding & Skill Level



Some Inquiry Sub-skills

- **Unbiased observations**: separate data/observations from inferences and make
- ***** Pose valid questions and hypotheses (clear, confirmable)
- Clear argumentation: Supporting hypotheses and providing sources; chains of reasoning
- Shift between brainstorming or divergent work/thinking and focusing or convergent work/thinking
- **Systematicity** and representativness of data set (exploring data space)
- **Organizing** data and looking for patterns, trends, categories
- ***** Dealing with errors, **noise**, and **outliers** in the data
- * Avoiding "**confirmation bias**;" considering counter examples & data
- *** Data analysis**. Many skills--graphing, statistical analysis, etc.
- **Metacognition**: Reflection, self-monitoring, evaluation, revising

Example task

* A farmer wanted to compare two corn varieties and their responses to varying amounts of water. She believed that Hybrid B would produce a better yield than Hybrid A, and she believed that daily watering would increase yields. She planted her North field with Hybrid A and her South field with Hybrid B. She watered one half of each field daily, while the other half of each field was watered once every four days. The resulting yields at harvest are shown below in a table and also in a graph.

Example task (cont.)

- A. The farmer had two hypotheses: (1) that hybrid B would produce a better yield than hybrid A; and (2) that daily watering would increase yields. Do the data support these hypotheses? Explain your answer in terms of the data.
- B. Did the farmer make any assumptions in setting up the experiment? List any assumptions that you can identify.
- C. Can you suggest any improvements in the design of the farmer's experiment that would provide more evidence concerning the two hypotheses? Describe what you would do.

Scientific Epistemology

- ***** Sophisticated beliefs about the **nature of science**
 - Science is not just experts accumulating facts using a fixed method
 - Understand theory-evidence relations in science
 - Understand uncertainty, change, and disagreement
- * Student's epistemology is explicit and reflective
- Student's epistemology is associated with lowerlevel science knowledge
- Student's epistemology functions as a metacognitive control structure in thinking about science

Acknowledgements &

Participants

- Supported by NSF CCLI grant # DUE-9972486 and NSF LIS grant # REC-9720363
- * PIs: Tom Murray, Larry Winship, Neil Stillings
- Software: Ryan Moore, Roger Bellin & Matt Cornell, GravitySwitch Inc.
- Curriculum: Ester Shartar
- * Classroom impl. and tchr. trng. research: Ayala Galton
- * Consulting: Laura Wenk, Paul Zachos
- * Teachers: Peter Shaughnessy, Pam Novak, Karen Cousland, Cynthia Gould, Susan Pease, Deirdre Scott, Patricia Tarnauskas, Jeff Weston (Amherst, Northampton, Turners Falls, Athol/Leominster, Chicopee, and Longmeadow)

tmurray@cs.umass.edu http://helios.hampshire.edu/~tjmCCS/ simforest.hampshire.edu

Supported by NSF CCLI grant # DUE-9972486 and NSF LIS grant # REC-9720363

Supporting Inquiry --#1

- **Scaffold inquiry process** -- templates; activity sequencing; inquiry / hypothesis notebook
- Supporting arguments (chains of reasoning) -justif. and critique links, argument graphs
- *** Data collection** -- search tools; data tables
- *** Data analysis** -- calc. tools, graphs, metaphenomena meters, concept maps,

Supporting Inquiry --#2

- Understanding content -- multiple representations, field guides, model evolution.
- **Reflection** -- templates and collaboration
- *** Planning** -- goal space visualization, plan notation
- **Coaching** -- argument analysis; hypothesis analysis; data collection analysis
- **Collaboration-** MUDs, email, etc., document annotations, human resource data bases
- * Peer Evaluation and Reporting -- templates, email,..

Inquiry Learning Software Research Projects (#1)

* == software

available

* *Belvedere (LRDC, Suthers)
* *Model-It (U. Mich., Solloway)
* *SimQuest/SMILSE (de Jong & Joolingen)
* *ThinkerTools (White & Frederiksen)
* Smithtown (LRDC, Shute, Glaser, et al.)
* *CISLE/Knowledge Forum (Scardemalia)
* CoVIS (NWU, ILS; Gomez, Edelson)

Inquiry Learning Software Research Projects (#2)

- * *Agent-Sheets (U. Colorado, Repening, Fisher)
- * *Exploring the Nardoo (U. Wolongong: Harper, Hedberg, Fasano)
- * *ISIS (Instr. Sci. inq. Skills), Maestro (AFRL Brooks: Shute, Steuck, Meyer, Rowley...)
- * And: (Georgia tech/Guzdial & Kolodner,...)
- * *Misc. software: Sim-City, Ant, earth; Stella,...

SimForest-G (Glass Box) **SimForest-B** (black box, MM Director) More "Graphically appealing" SimForest-G (glass box, Java) Model Inspector, Model Editor, Graphing Tools SimGlass (Java) Generic architecture for glass box simulations

Variations in Inquiry Software

Data Source

Data Collection

Analysis

Results

Real world, Source Docs, Simulation, Modeling

Observe, Measure, Find Graphs/Tbls, Hypoth. Tools, Coaching, Arg. Graph, Concept graph Presentation, (Report Genres), Argument, Model/law, Pattern/trend, Simulation

Inquiry Environment Activities

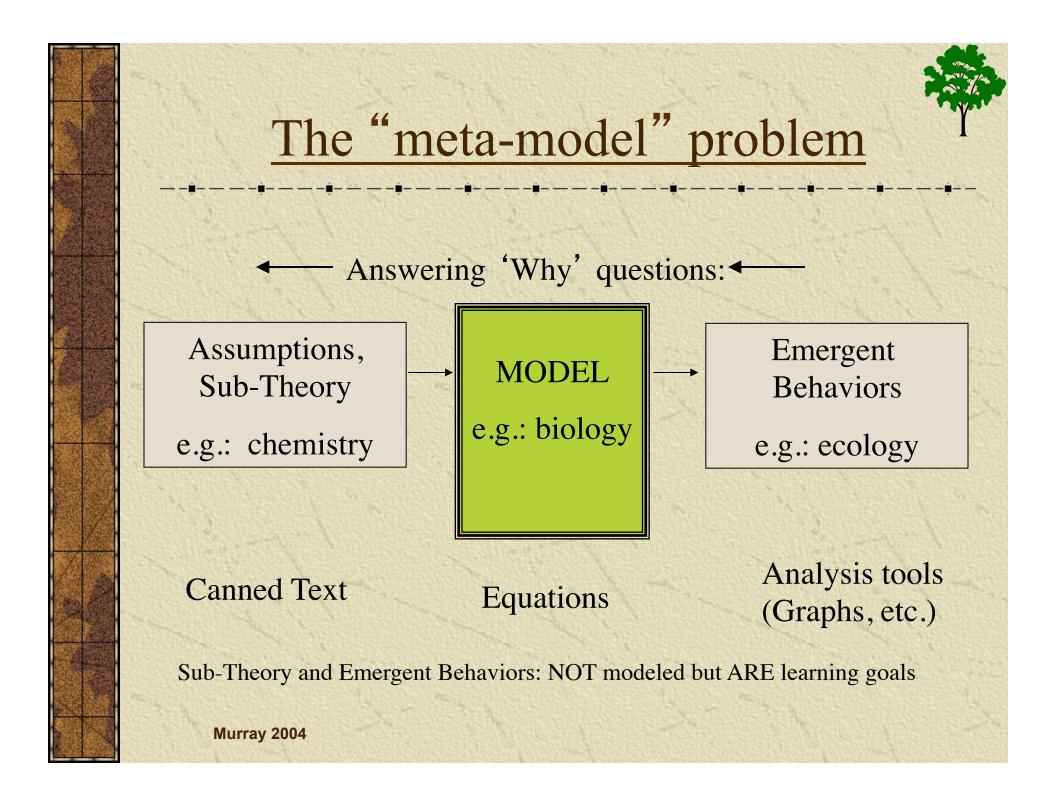
	WHAT IF?	X VS Y	WHY	MODELING	MODEL VALIDATION
1) en 2)	edific values: explore (open deol Hypothesis testing oal oriented)	How does Xeffect Y? What is relationship between X andY?	Why does Xeffect Y?	 Understand the model more deeply Parametric: fixed equation, change parameters plugin sub- models/equations (byindv. equ or by type/factor) Alternate theories Creator/god(invert newlaws) 	Compare with real data 1. validate systems/teachers mode 2. validate student's mode
8 S 1 2 4	idseemode anges)	(infer a part of the model; vs. whole model is multivariate)	From outside the model; more "fundamental" question or sub-model		
	S. C. Strange				

Black-, Glass-, and Empty-Box Simulations

Black Box Simulations

Ex: SimCity

<u>Glass Box</u> Domain-Specific Simulations

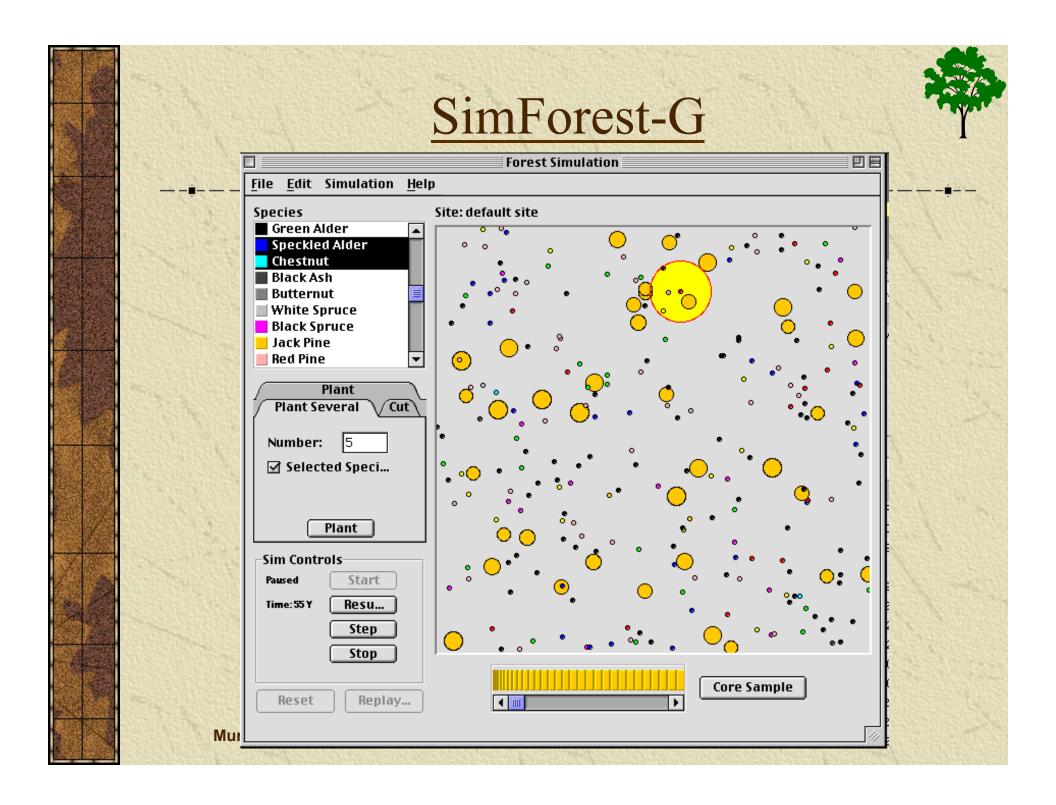

Ex: SimForest

<u>Free-box</u> Modeling Systems

Ex: Logo, Stella

- Start with full working, realistic model

- Domain specific conceptual support for each equation

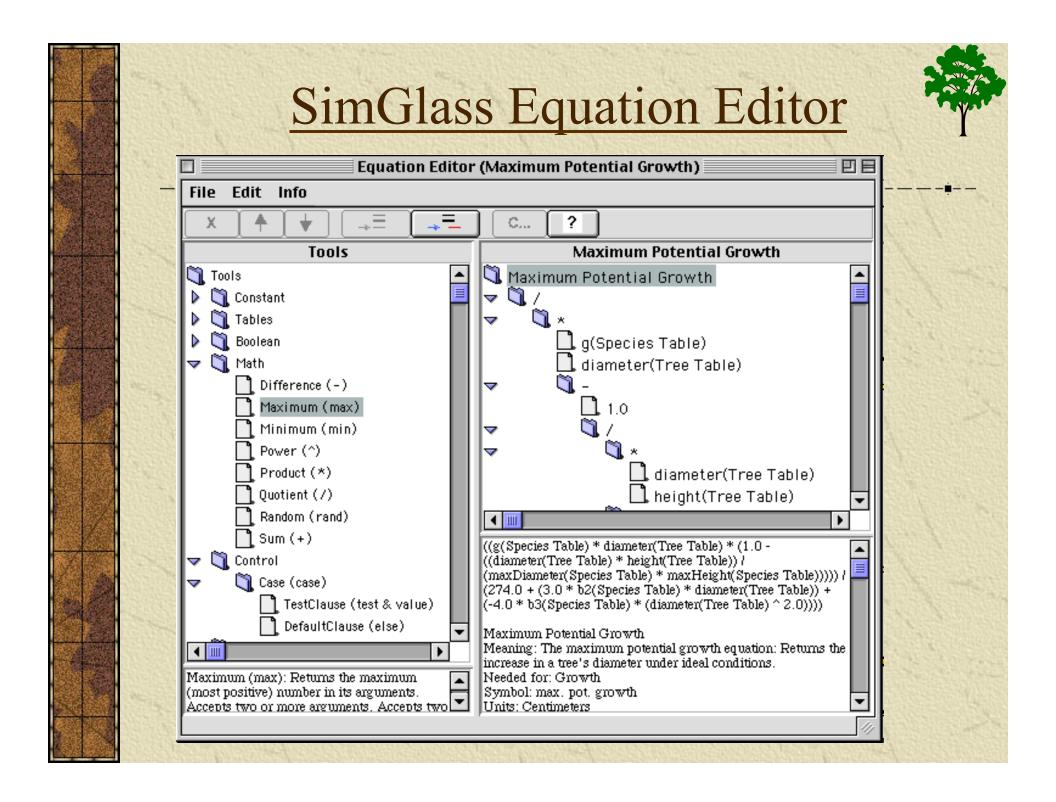


Model Inspector Information

Equation	SQI = (1-BAR)/BAMAX					
Textual representation of the	Soil Quality Index = (1 - Total Basal Area)/Maximum Plot Basal					
equation	Area					
Description	SQL is soil quality index, which determines how the intrinsic					
	fertility of the site limits the growth of trees. It is a measure of					
	[text book or URL reference]					
Units	(Theunits in which the variable is masured)					
Graph ofrelationship	Picture showing qualitative shape of elationship					
Referents	SQI is referred to in these equations					
	SQI refers to these variables:					
Assumptions simplifications	The equation assumes that tree circumferences are pefect circles.					
and Imitations to the equation						
Alternative equations	For a more complex equation that takes into account					
	circumferences that are not perfect circles, see					

Levels of Questions/Hypothesis

Question Hypoth Level	Example	Action toAnsver/Test			
1. Concrete/Stuational ("What	"What would happen if I started a	Runit and doserve			
if?")	forest with almost all birches and				
	just two maples?"				
2. Relationships ("How?")	"How does soil quality affect	Scientific Inquiry; Graphs			
	species diversity?"				
3. Explanatory ("W hy?")	"Why does increased soil quality	Look atequations, Carned			
	decreæe tree diversity?"	explanations in Model Inspector			
4. Modeling	"What would happen if we replaced	Inquiry in the model space Model			
	the Basal Areaequation with a	Editing			
	morecomplicatel onethattakes				
	treedensity into account?'				


SimGlass Equation List

🗖 📃 Equation List (edu.hampshire.forest.eq.EquationSet@33367ed) – no File 📃 🗏 🗏									
File Equation Info									
Name		Equati							
Wilt Factor		wilt factor = max(0.0, (1.0 - ((water stress / wIMax(Species							
Temperature Factor		temperature factor = max(0.0, ((4.0 * (degree days - degDays							
Site Quality		site quality = (temperature factor * nitrogen factor * wilt fact							
Recruitment (shade-intolerant)		recruitment (intolerant) = (CASE: IF ((avail light > 0.9899							
Recruitment (shade-intermediate)		recruitment (intermediate) = (CASE: IF ((minSaplingLight(
Recruitment (shade-tolerant)		recruitment (tolerant) = (CASE: IF (rand(1.0) < (light facto							
Recruitment		recruitment = (CASE: IF (1.0 = light(Species Table)) RETUR							
Recruitment Size		recruitment size = 0.1							
Limiting Factors		limiting factors = (light factor * site quality)							
Maximum Potential Growth		max. pot. growth = ((g(Species Table) * diameter(Tree Table)							
Growth		growth = (limiting factors * max. pot. growth)							
Stochastic Death Test		stochastic test = (rand(1.0) < (4.0 / maximumAge(Species Tat							

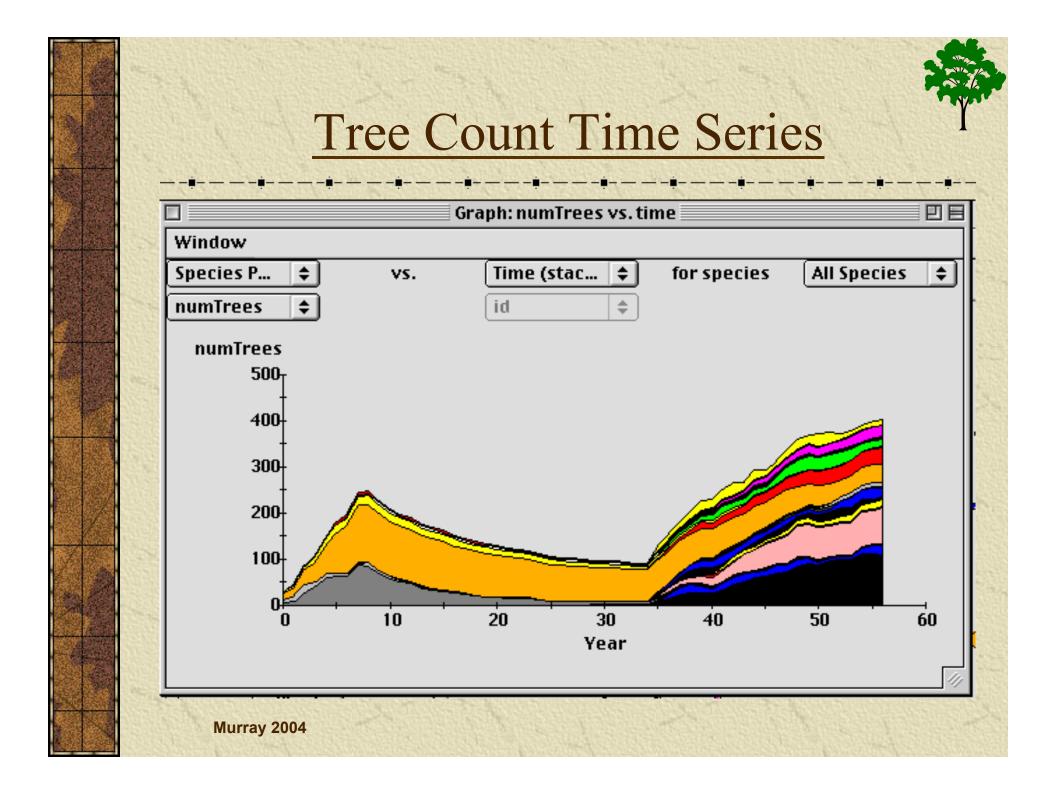
Author: Included with Fouest package. Description: A complete set of modeling equations, derived from Botkin.

Murray 2004

4

SimGlass-Table Editors

												25-1
🗆Equation Editor (Maximum Potential Growth) 🗉 🗄												
File Edit Info												
X (+) + (-=)= C ?											
Tools	s Maximum Potential Growth											
🗂 🗂 Tools 📃	🔺 🔍 Maximum Potential Growth											
🕨 🕅 Constant 📃												
🕨 🕅 Tables												
Boolean Equation Li	Equation List (edu.hampshire.forest.eg.EquationSet@33367ed) - no Fil						T					
		ismre.iores	c.eq.cqua	ແບກຈະເຜ	33307Eu) - no ri		1				
Difference File Equation In	10											
Maximum / Name							Equati					
Minimum (Wilt Factor			= max(0.0,									
Power (^)		· ·	re factor = m			· ·						
Product (* Site Quality		site quality	/ = (tempera	iture factor								
						ecies Ta						E
					e column h		parameter o	ptions.				
Sum (+)	name Currans Mars	maximum Age		maxHeight	b2	b3	9	0	light 7	nitrogen	degDaysMax	-
Control Recruitment Size	Sugar Map Beech	400 366	170 160	3,350	37.8 44	0.111	118.7 87.7	1,570 2.2	3		6,300 6,000	_
Case (case)	Yellow Bi	300	100	3,660	58.3	0.137	143.6	0.486	2	2	5,300	_=
TestCla Default	White Ash	150	150	2,440	30.7	0.102	147.5	1.75	2	2	10,947	-11
Growth	Mountain	25	14	500	53.8	2	72.6	1.13	3	2	6,300	
Stochastic Death Test	Striped M	30	23	1,000	76.7	1.7	109.8	1.75	3	2	6,300	
Maximum (max): Retun (most positive) number	Pin Cherry	30	28	1,126	70.6	1.26	227.2	2.45	1	1	6,000	
Accepts two or more are Description: A crouplete :	Choke Che	20	10	500	72.6	3.63	233.3	2.45	1	2	10,000	
	Balsam Fir	200	86	2,290	50.1	0.291	102.7	2.5	3	3	3,700	
	Red Spruce	400	60	2,290	71.8	0.598	50.7	2.5	3	3	3,800	
	White Bir	140	76	3,050	76.6	0.504	190.1	0.486	2	3	4,000	
	Mountain	30	10	500	72.6	3.63	155.6	1.75	2	2	4,000	-88
	Red Maple	150	150	3,660	47	0.156	213.8	1.75	2	3	12,400	-
												•
			Refrest		ew Para	meter	Watch	h Select	ed Cell	٦		
												///
Murray 2004	Sec. 2						and the					
Wullay 2004												


SimForest-G Species Table

	Species Table										
	Click the column headers for parameter options.										
name	maximum Age	maxDiame	ma×Height	b2	b3	g	C	light	nitrogen	degDaysMax	c
Sugar Map	400	170	3,350	37.8	0.111	118.7	1,570	3	2	6,300	-
Beech	366	160	3,660	44	0.137	87.7	2.2	3	2	6,000	
Yellow Bi	300	100	3,050	58.3	0.291	143.6	0.486	2	2	5,300	
White Ash	150	150	2,440	30.7	0.102	147.5	1.75	2	1	10,947	
Mountain	25	14	500	53.8	2	72.6	1.13	3	2	6,300	
Striped M	30	23	1,000	76.7	1.7	109.8	1.75	3	2	6,300	
Pin Cherry	30	28	1,126	70.6	1.26	227.2	2.45	1	1	6,000	
Choke Che	20	10	500	72.6	3.63	233.3	2.45	1	2	10,000	
Balsam Fir	200	86	2,290	50.1	0.291	102.7	2.5	3	3	3,700	
Red Spruce	400	60	2,290	71.8	0.598	50.7	2.5	3	3	3,800	
White Bir	140	76	3,050	76.6	0.504	190.1	0.486	2	3	4,000	
Mountain	30	10	500	72.6	3.63	155.6	1.75	2	2	4,000	
Red Maple	150	150	3,660	47	0.156	213.8	1.75	2	3	12,400	-
					_				_		▶

Refresh

New Parameter

Watch Selected Cell

Basal Area Bar Chart Graph: SpBasalArea by species Window Specie... ¢∣ **Species** ŧ for species All Spe... ŧ vs. SpBasa... ŧ id ŧ SpBasalArea White Ash Red Maple Red Oak White Pine **Red Spruce** Black Spruce Silver Maple **Bigtooth Aspen** Green Alder Black Ash Gray Birch Pin Cherry **Red** Cedar **Species** Murray 2004

The Growth Equation

 $dD = G * D * (D_{max} - D) / D_{max} * Lf * Tf * Wf * Sf$

- *dD* = change in diameter over time
- G = optimal growth rate (specific to species)
- D = diameter
- D_{max} = maximum diameter(specific to species)
- Lf = light factor
- Tf = temperature factor
- Wf = water factor
- Sf = soil nutrient factor

Coding scheme

for class observation and video analysis

Teacher and Student Moves	Session Properties
Teacher Questions:	Locus of Information:
O (open); C (closed); L (leading); R (rhetorical)	
Teacher Lectures:	S->T student to teacher
M (motivating); C (content); S (summary); E	T->S teacher to student
(example); A (analogy); T (assigns a task)	S->S student to student
	S->C student controls computer
	(TG) (with teacher guiding)
Student:	Inquiry Cycle Steps:
U (software usability question); M (subject matter	Q - question, predict, or hypothesize
question); P (student performs task)	P - plan
	A - analyze or model
	C - conclude/communicate

Student Problems/Issues -- #1

- Can't manage one's 'agenda:' open Qs, hypotheses, partial conclusions, sub-goals, process reflection (Floundering, inefficiency; non-systematic)
- * Can't keep track of or organize: notes & ideas; data and relationships
- * Too many tools, options, choices; how and when to use them?
- Lost in Hyperspace: Where am I? How do I get to __? Where was I? How do these pages relate?
- Can't decide: when I have enough info. to conclude; what to look at next

Student Problems/Issues -- #2

- * Problems finding 'good questions'
- Not enough background knowledge
- * Observations: unbiased; attention to detail
- Overcoming strong preconceptions and misconceptions
- * Can't understand or visualize: important patterns or relationships
- Can't generalize what's learned in lab to real world experience
- * Can't communicate what is learned, found, induced