
439
Murray, Ainsworth, & Blessing (eds.), Authoring Tools for Adv. Tech. Learning Env.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands, pp. 439-467.

TOM MURRAY

Chapter 15

PRINCIPLES FOR PEDAGOGY-ORIENTED
KNOWLEDGE BASED TUTOR

AUTHORING SYSTEMS:

 Lessons Learned and a Design Meta-Model

Abstract. While intelligent tutoring systems (ITSs), also called knowledge based
tutors, are becoming more common and proving to be increasingly effective, each
one must still be built from scratch at a significant cost. This paper discusses a
number of design issues and design tradeoffs that are involved in building ITS
authoring tools, and discuss knowledge acquisition and representation "lesson
learned" in our work. A generic framework or "reference model" called KBT-MM
(knowledge based tutor meta-model) for knowledge based tutor authoring tools is
described. The reference model articulates a minimal but necessary set of features
for knowledge based authoring tools that aim for scope, depth, learnability, and
productivity.

1. INTRODUCTION

Intelligent tutoring systems. Intelligent Tutoring Systems (ITSs), also called
knowledge-based tutors, are computer-based instructional systems that have separate
data bases, or knowledge bases, for instructional content (specifying what to teach)
and teaching strategies (specifying how to teach), and attempt to use inferences
about a student's mastery of topics to dynamically adapt instruction. ITS design is
founded on two fundamental assumptions about learning. First, that individualized
instruction by a competent tutor is far superior to classroom style learning because
both the content and style of the instruction can be continuously adapted to best
meet the needs of the situation (Bloom 1956). Second, that students learn better in
situations which more closely approximate the situations in which they will use their
knowledge, i.e. they "learn by doing," learn via their mistakes, and learn by
constructing knowledge in a very individualized way (Bruner 1966, Ginsburg &
Opper 1979). Individually paced instruction and frame-based computer aided
instruction (CAI) comprised early attempts to provide adaptive instruction, and,
though successful for some types of learning, fell short because their learning
environments were too contrived and their ability to adapt was limited to branching
between static screens. ITSs use techniques that allow automated instruction to

440 T. MURRAY

come closer to the ideal, by more closely simulating realistic situations, and by
incorporating computational models (knowledge bases) of the content, the teaching
process, and the student's learning state (Wenger 1987).

The need for ITS authoring tools. In the last decade ITSs have moved out of the
lab and into classrooms and workplaces where some have proven to be highly
effective as learning aides (see Chapter 17 in this volume). While intelligent
tutoring systems are becoming more common and proving to be increasingly
effective, each one must still be built from scratch at a significant cost. Little is
available in terms of authoring tools for these systems. Authoring systems are
commercially available for traditional CAI and multimedia-based training, but these
authoring systems lack the sophistication required to build intelligent tutors.
Commercial off-the-shelf (COTS) authoring systems excel in giving the
instructional designer tools to produce visually appealing and interactive screens,
but behind the presentation screens is a shallow representation of content and
pedagogy.

Pedagogy-oriented tutors. A fundamental aspect of intelligent tutors is that
knowledge about the domain and knowledge about how to teach is stored in modular
components that can be combined, visualized and edited in the process of tutor
creation. I use the term "knowledge based tutors" to highlight this aspect. In
Chapter 17 I claim that intelligent tutors can be categorised into two broad groups,
pedagogy-oriented and performance-oriented (though some systems fall in a grey
area between these two):

Pedagogy-oriented systems focus on how to sequence and teach relatively
canned content. Most of them pay special attention to the representation of
teaching strategies and tactics. Performance-oriented systems focus on
providing rich learning environments in which students can learn skills by
practicing them and receiving feedback. Most of them pay special attention
to the representation of human problem solving skills or domain-specific
processes or systems (either man made ones such as electrical components,
or natural ones such as the meteorology). In general, performance-oriented
systems focus on feedback and guidance at the level of individual skills and
procedural steps, while pedagogy-oriented systems pay more attention to
guidance and planning at a more global level, looking at the sequence of
topics and the need for prerequisite topics.

This paper focuses on pedagogy-oriented tutoring systems. The suggestions
presented in this paper apply to performance-oriented tutors also, but will be useful
only to the extent that they model the conceptual structure of a domain, represent
curriculum, and/or incorporate teaching strategies (as do most pedagogy-oriented
systems). In Chapter 11 I describe the Eon knowledge based tutor authoring system.
This Chapter summarizes some lessons learned from our experiences in the Eon

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 441

project, and describes a generic framework or "reference model1" called KBT-MM
(knowledge based tutor meta-model) for knowledge based tutor authoring tools.2

The reference model proposes a minimal but necessary set of features for knowledge
based authoring tools that aim for high generality, usability, flexibility, and power
(see Chapter 17 for a discussion of these terms). It specifies representational and
authoring features that systems should have, but not how these features should be
implemented.

The Chapter begins by discussing some general issues that characterize
knowledge based tutors in comparison with traditional CAI systems. I characterize
this difference as an evolution from a story-board metaphor to a knowledge based
metaphor for representing instructional content. I explain that an important
characteristic of knowledge based tutors is that they are designed using building
blocks at a higher more expressive level of abstraction. I call this "designing at the
pedagogical level" (vs. at the media level).

The Chapter then describes the KBT-MM, beginning with a conceptual model of
the primary objects needed in the pedagogical domain model (including topics,
lessons, and contents), their attributes and how they relate to and interact with each
other. This model is called the "five layered decision architecture." Then we
describe general features of student models and teaching models within the KBT-
MM framework. Next, I discuss how Ontology objects are used to specify the
domain-specific details of a tutor and allow for the development of special purpose
authoring systems. Finally I will discuss lessons learned and some of the
problematic areas of representing pedagogical knowledge in knowledge based
tutors.

2. FROM COMPUTER-BASED TO KNOWLEDGE-BASED INSTRUCTION

How an authoring tool is designed depends critically on who the intended user
audience is. I begin by clarifying our target authoring audience and design team
model, and then describe the types of design paradigm shifts needed to build ITSs.

2.1 Who Are the Users of ITS Authoring Tools?

In Chapter 17 Section 5.3 is a discussion of what skills are needed for using
authoring tools of different types. As discussed in that Chapter, many ITS authoring
systems simplify the authoring process by either making some aspects of the ITS
non-authorable, or by constraining the type of ITSs that can be produced. For this
Chapter our goal is support the authoring of all aspects of an ITS: domain model,
teaching model, student model, and interface. The skill set needed to do this dictates
that an ITS will usually be built by a team rather than an individual. The software

1 Our term meta-model is similar to "reference model/reference architecture" mentioned in
Schoening & Weeler (1997) and Betz et al. (1997).
2 The reader may read either Chapter first, depending on whether one finds it most
perspicuous to learn about generalities or a particular example first.

442 T. MURRAY

we are picturing has a complexity on the order of magnitude of Photoshop,
AutoCAD, or FileMaker, i.e. it would take more skill or training than is usually
associated with tools like word processors and PowerPoint. Building an ITS from
scratch in this way requires a significant time commitment on the part of a teacher or
domain expert. The “master” teachers or trainers who become ITS authors will have
to be able to invest significant time building the systems and invest additional start-
up time on the learning curve for these sophisticated tools. Our goal here is not to
lower the skill threshold so far that the average classroom teacher can author an ITS
(but they may be able to customize the ITS, see Section 3.7) but lower it to a point
where every company and every school district could have at least one team capable
of ITS authoring. These teams could work with teachers, subject matter experts, and
graphical artists to rapidly produce ITSs.

By providing visualizations of key concepts and components in the ITS,
authoring tools could make ITS authoring accessible to hundreds of thousands of
individuals rather than a few hundred. We will call the lead person on an ITSs
design team, the one who synthesizes knowledge of the domain, teaching strategies,
and the requirements of the authoring system, the "instructional designer." The goal
of the KBT-MM framework is to facilitate cost-effective ITS production by these
instructional designers, as well as by those who have traditionally built ITSs from
scratch (primarily those in academic and industrial research labs).

2.2 From Story Boards To Knowledge Bases

7

12

4323

15

6

1

41

26

CAI ITS

Knowledge Base

Teaching Strategies

definitions, hints,
examples,
 questions,...

if xxx give a hint...
when yyy remeditate...

Tutoring

Figure 1: CAI story board vs. ITS knowledge base

Though there are few ITS instructional designers, there are many CAI instructional
designers. Empowering these users to build more powerful instructional systems

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 443

requires new tools and a shift in the way many of them conceptualize instructional
systems. Specifically, it is proposed that moving from CAI authoring to ITS
authoring involves a fundamental paradigm shift from “story board” representations
of instructional material to more powerful and flexible "knowledge based"
representations. The basic concept is not new; in fact, it is fundamental to all AI
work. Our contribution is in fleshing out how the knowledge based paradigm can be
best presented to empower instructional designers.

Commercially available authoring systems assume and support a representation
of instructional content and instructional flow that is explicit, non-modular, and
fairly linear. At a conceptual level, the instruction is specified like this (see Figure
1): “Bring up screen # 41; If the user clicks on button A, then go to screen # 26.”
Though branching is allowed, each branch must be explicitly specified. Adding a
new topic or question involves explicitly encoding the branches to this content.
Designing new content requires a duplication of efforts. I call this paradigm for
designing instructional systems “story boarding” because it is based on enumerating
all of the screens and the explicit links from each screen to the next. In contrast, in a
knowledge based tutor the instructional content is separated from the specifications
of how and when that content is presented to the student, so that the content can be
used and re-used in multiple ways. Specifying how and when the content is to be
presented is done with generic, reusable teaching strategies. For example, a CAI
system may be programmed to give two hints for wrong answers to exercises. If the
author later realizes that 3 hints are necessary, she has to go back and change every
link associated with giving hints. In contrast, in the knowledge based model, there
is one strategy specifying how and when hints are given, so that changing from 2 to
3 hints is a matter of making one change.

Designing at the Pedagogical Level. In traditional CAI instructional actions are
encoded using building blocks at the level of the media: text, pictures, button clicks,
etc. In contrast, knowledge based tutors can facilitate the design of instructional
actions using pedagogically relevant building blocks. For example: “give a hint," or
“teach the prerequisites”. Designing instruction using building blocks such as
“hint,” “prerequisite,” “if-confused,” “mastered," "explanation," and “summarize” is
much more powerful than designing instruction at the level of “show video,"
“present picture” or “wait for the button click” The instructor can conceptualize the
curriculum at a more appropriate and powerful level of abstraction. An instructional
strategy in the intelligent tutor might be: “if the current topic is conceptual and the
student is doing poorly, give several examples.” Alternate strategies can be created,
so that the appropriate strategy can be used according to the needs of the student
(e.g. learning style or mastery of the current topic) or the pedagogical characteristics
of the content being taught (e.g. whether it is procedural or conceptual information).

Benefits of knowledge based tutoring. Designing tutoring systems in this way has
many advantages over the traditional CAI design paradigm:

1) The behavior of the tutor can be easily modified. As shown above, to
change when hints are given, only a single "give hint" strategy needs to be

444 T. MURRAY

changed and this effects how hints are given through the entire curriculum.
This is true for the author making this change and also for a "meta-strategy"
that sets this parameter during run time.

2) The content of the knowledge base is modular and can be used for several
purposes. For example, a “topic” object in the knowledge base can contain
information about how to teach itself, summarize itself, give examples of
itself, introduce itself, and test the student's knowledge of itself. The same
topic can then be used in many parts of the tutorial, for example, giving a
summary at some point and teaching itself later on.

3) Systems designed in this way can be more adaptive to the needs of the
student.

4) Instruction can be much more learner-centered, since modularization
allows students to navigate to the topics they want to learn, and to ask for
hints, examples, etc.

5) Because the content is modularised, authoring tools can be built to provide
multiple and abstracted views of the instructional content. This facilitates
instructors in being able to easily view, inspect and navigate through the
knowledge bases.

3. A KNOWLEDGE-BASED TUTOR META-MODEL

3.1 Focussing on the Representation of Pedagogical Knowledge

Authoring tools can be described in terms of two aspects: an underlying
representational framework (conceptual model), and a user interface (the authoring
"tools") that reify this framework for the user, allowing her to create, visualize, and
modify the elements of an ITS. Thus, the end usability and power of an authoring
tool depends on both the power and fidelity of the underlying conceptual model and
also on the usability of the interface tools. The conceptual model is of primary
importance because if it is insufficient the best that the interface can do is to
skillfully reify a weak model. Therefore, one goal of this Chapter is to define a
conceptual model for knowledge based tutor authoring tools that aims for high
power, generality, flexibility, and usability, based on what we see in a variety of
other ITS authoring systems. The architecture is a "reference architecture" that
illustrates the key distinctions necessary for a knowledge based tutor, but is not
meant to constrain how these distinctions are implemented in a system. Rather than
specify a particular design, KBT-MM prescribes properties that we think all
knowledge-based authoring tools should have. It is a base-line model that contains a
minimal but necessary set of features and elements, rather than (a baroque) model
that tries to include most of the features seen elsewhere. In some instances it
describes innovations to what is found in most ITS authoring tools, but in most
aspects it is a systematic synthesis and abstraction of the important elements found
in other systems. The Eon authoring system, described in Chapter 11, is one
example of many possible implementations that conform fully with our description
of the KBT-MM.

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 445

As is commonly done, we can describe the knowledge encoded in an ITS as
being either domain knowledge or teaching knowledge. However, some of the
knowledge in an ITS is in both categories. For example, hints and prerequisite
relationships are usually considered part of the domain knowledge base, yet they are
relevant only to the teaching of a subject (not to performance in the subject). As
shown in Figure 2, I define a domain's "pedagogical knowledge" (sometimes called
propeadutic information) as information specific to a domain that is relevant to
teaching about the domain. As shown in the figure, some domain knowledge is
relevant to performance but not necessarily used in instructional decisions. This
"performance expertise" usually comprises the expert system rules (or production
rules or procedures) in performance-oriented systems. Teaching knowledge can also
be categorized as either teaching strategies, the (usually) domain independent
strategies indicating how to teach; and pedagogical knowledge, the domain
dependent declarative knowledge mentioned above. Performance-oriented systems
tend to have non-existent or degenerating teaching strategies, and pedagogy-oriented
systems tend to have non-existent or degenerative performance expertise.

The purpose for clarifying these distinctions is that KBT-MM focuses on the
representation of pedagogical knowledge. Pedagogical knowledge is declarative
information (whether "canned" or generated) such as examples, hints, explanations,
definitions, problem descriptions, and problem answers. It includes the definition of
topics and their relationships (e.g. prerequisite, generalization) that are needed to
sequence instructional units. It also includes the classification of knowledge (or
topics) according to knowledge type (e.g. fact, concept, principle) for the purpose of
instruction.

Figure 2. Teaching and Domain Knowledge

Traditionally, ITSs are described as having four major components or functions
(Wenger 1987): a domain model, a teaching model, a student model, and an
interface. Above I have mentioned the domain and teaching models. KBT-MM has
less to say about the representation of the teaching strategies. This is because there
is significant overlap and agreement (though nothing approaching consensus) among
numerous ITSs, ITS authoring tools, and instructional design theories, on how
content and curriculum knowledge should be conceptualised, while there is very
little agreement on how to represent teaching strategies. As indicated above, the

446 T. MURRAY

representation of expert problem solving knowledge is outside the scope of KBT-
MM. KBT-MM does not specify details about a general framework for student
modelling. This is because, at the knowledge representation level, student models
are a rather straightforward "overlay" assignment of student knowledge values (or
user history or performance metrics) to elements in the domain model. The
algorithmic method of inferring the student state from student behavior is much
more complex and idiosyncratic. The representation of the student model follows in
a straightforward way from the representation of the domain model, plus a
consideration of the data types needed to store the outputs of these inference
methods. For example, a system that uses Bayesian inferencing methods will have a
student model representational formalism tailored specifically to this method.
Inferencing methods whose calculations use the number of hints given in each
problem will of course have to store this information for each problem solved.

3.2 Abstract Topic Objects

Intelligent tutors make inferences about what knowledge or skills the student has.
As such they differ fundamentally from traditional CAI in that they deal with
abstract entities assumed to exist in the minds of students, in addition to the concrete
content presented to the student. We call these entities "topics." They are called
"instructional units," "domain knowledge elements," "knowledge units," "cognitive
rules" etc. in other systems. Expository content, stored as text or media, is
"presented," and inquisitory content (such as questions and tests) can be "correct,"
"answered," "passed" etc. In contrast, topics are "known," "understood," etc. In
KBT-MM instructional units of any grain size are represented by Topics.
Brusilovsky (in this Volume) notes that in hypermedia authoring there is a parallel
distinction between the knowledge space and the hypermedia content space. Topics
have a Topic Type that allows them to be categorized. Topics can have Topic
Properties, such as difficulty and importance, as needed. Topic links define
directed relationships between topics. Since one can define different types of topics
and create arbitrary relationships between topics, this single object suffices for many
representational schemes. That is, the topic object can be used to represent different
types of units (such as concepts and facts) and can be used to represent different
hierarchical or containment levels of units--what might be called chapters, sections,
or sub-topics.

For a given tutor the vocabulary of topic types and link types is defined in an
"Ontology" (see Section 4.5). Customizable link types allow the representation of a
wide variety of topic networks, including component hierarchies, skill lattices,
concept networks, etc. Each knowledge type defined in the Ontology has its
allowed properties, allowed link types it can connect to, and allowed topic levels.
Buggy Knowledge can be represented as topics of type Misconception, Procedure
Bug, etc., depending on the type of knowledge that is in error.

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 447

3.3 A Layered Curriculum Object Framework

As I have mentioned, our goal is for KBT-MM to have a minimal but necessary set
of features for KBT-authoring tools that promotes power, usability, generality and
flexibility. From an informal analysis of pedagogy-oriented ITSs and ITS authoring
tools, I propose a five layered "decision architecture," illustrated in Figure 3, as a
general framework or reference architecture that illustrates common pedagogical
components of these systems. The architecture specifies, at a conceptual level, the
five main types of pedagogical objects and shows how control is mediated among
them as a simple and necessary result of their nature. The Topic, Presentation
Contents, and Events layers are common to all knowledge based tutors (though they
may be called different things and implemented in various ways). The Lesson and
Topic Level layers are less common and are included to satisfy the requirements of
power and generality. Next I describe the five layers in an order that facilitates
explanation of their purpose.

Figure 3: Five-Layer Decision Architecture

Events. Events are the low level interactions between the student and tutor, such
as a student clicking a button, or the tutor giving a hint, several of which will occur
while a Content is running.

Presentation Contents. The Presentation Contents layer contains the
specific concrete contents that the student will see and manipulate (text, graphics,

448 T. MURRAY

buttons, interactive screens, etc., or the templates or algorithms for generating this
content). Contents are expository or inquisitory interactions.

Topic Levels. As mentioned above, topics are related to each other via topic
links to form hierarchies or networks. Having only the semantic network formalism
to represent all aspects of curriculum structure was found to be inadequate. In some
domains the most perspicuous structure for representing aspects of the content may
be a table rather than a network. In our Eon system we found that Levels within
topics allowed us to represent multiple levels of performance (e.g. memorizing vs.
using knowledge), mastery (novice to expert), and pedagogical purpose (summary,
motivation, example, evaluation, etc.) for each topic. This layer of the architecture
allows for a structural layer within each topic object. As shown in the Figure,
Presentation Contents are referenced from inside the topic levels. (Section 5.4
describes uses of topic levels in more detail.)Topics. Topics were defined above.
They are specialized according to Topic Types, specified with Topic Properties, and
related with Topic Links. Topic networks do not specify any ordering or starting
point for learning sessions, and are independent of the instructional purpose of
particular sessions.

Lessons . Lesson objects are used to specify instructional goals and
learning/tutoring styles for a particular group of students or learning session.
Nominally, the Lesson lists a one or more starting or goal topics, and specifies a
default teaching strategy. The teaching strategy then determines how the topic
network will be traversed, causing other topics to be taught, to satisfy the goal of
learning the goal knowledge.

The nature of the objects in the Decision Architecture implies the following general
control structure: running a Lesson runs a number of Topics, each of which runs
some of its Topic Levels, each of which contains a number of Presentation Contents,
each of which leads to a number of Events. In the next Section we discuss how
previous research and theory informs the KBT-MM model as described so far.

3.4 Previous Work in Representing Pedagogical Knowledge

This Section focuses on what we have learned about representing pedagogical
domain knowledge, including elements from various instructional theories and
authoring tools, and use this as evidence for the validity and generality KBT-MM
described above. We will make reference to the following authoring tool systems,
references to which can be found in Chapter 17: XAIDA, REDEEM, Eon, DNA,
Expert CML, Instructional Simulator, IDLE, IRIS, CREAM, SimQuest, and Eon.

A. Modular abstract knowledge units. As mentioned in Section 3.2,
intelligent tutors represent units of knowledge to be learned, which we call topics, as
modular units separate from content and instructional strategy. All of the principles
and theories mentioned below implicitly or explicitly assume that content can be
modularized to organize the learning. (However, in Section 6.3 I discuss some
problems inherent in knowledge modularization.) Of the authoring tools described

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 449

in the Overview Chapter (Chapter 17), every one of them uses modular knowledge
units, except for a couple of special purpose authoring systems for tutors that do not
reason about what to teach next. Authoring tools use different schemes and use
different names for instructional units. REDEEM has pages and sections. Expert
CML organizes domain knowledge in a hierarchy of objects including Departments,
Programs, Courses, Topics, Subtopics, Modules, SubModules, Objectives, and
Activities.

B. Types of Knowledge. Researchers in computer science, psychology and
educational theory have developed many schemes for classifying knowledge.
VanLehn (1987, pg.60), speaking from an AI perspective, says that the popular
procedural/declarative distinction is "notorious...as a fuzzy, seldom useful
differentiation." It is recommend that the procedural/declarative distinction be
abandoned for classifying knowledge in instructional systems (except in contexts
where it has a precise meaning, as in the ACT* theory of cognition (Anderson
1983)) and that more descriptive and precise schemes be used.

Bloom (1956) and Gagne (1985) were among the first to develop clear
classifications of knowledge and learned behavior, and assert that different types of
knowledge require different types of learning or instructional methods. Other
knowledge typing schemes were later developed which are better grounded in
modern cognitive theory and are more operational and concrete for the purposes of
computational representation. For example, Merrill's Component Display Theory
(Merrill 1983) classifies learning objectives (content types) as facts, concepts,
procedures, or principles. In contrast to the hierarchical typing schemes of Bloom
and Gagne, Merrill's content types are organized into a matrix along with
performance types (explained later). Kyllonen and Shute (1988) propose a more
complex multidimensional model which distinguishes knowledge types in a
hierarchy which illustrates cognitive complexity, and organizes these types in
relation to the level of autonomy of learning and the processing speed needed to
perform the task. Reigeluth's Elaboration Theory of Instruction (1983) is another
complex knowledge typing scheme. It builds upon Merrill's theory for how to teach
individual units of knowledge of different types, and goes further to proposes a
theory of how these units can be organized and taught within entire domains, which
require knowledge of many types.

Topics ("basic learning units") in IRIS use Merrill's typing scheme: facts
concepts, procedures, principles. DNA organizes topics ("curriculum elements")
into facts (symbolic and episodic knowledge), procedures, and concepts. CREAM
uses Gagne's system: verbal information, intellectual skills, cognitive strategies,
motor skills, attitudes.

C. Hierarchies. latices, and networks. A number of educational theories
mention the hierarchical nature of knowledge. For example, Ausubel's
"subsumption theory" of learning (Ausubel 1960) focuses on the hierarchical
organization of concepts in disciplines. He proposes that abstract knowledge (further
up in the hierarchy) is more meaningful and useful, and preferred to more specific or
rote learning. His Advanced Organizer model prescribes that new information must
relate to previous information, and that effective learning paths through the
hierarchy of knowledge will differ for each student. Web teaching (Halff 1988)

450 T. MURRAY

similarly requires that knowledge networks be annotated with information about the
relatedness of topics (e.g. prefer more closely related topics) and generality (e.g.
give generalities before specifics). The subsumption relationship is valid for
conceptual learning, but pedagogical knowledge for procedural or skill learning can
require a different treatment. Burton and Brown's BUGGY tutor (1982) uses a skill
lattice to represent subtraction subskills. The NEOMYCIN system (Clancey 1982)
uses an and/or lattice to represent medical diagnostic procedures. The BIP-II
programming tutor (Westcourt et. al 1977) uses a network of subskills related by
four links: analogous, harder than, same difficulty, prerequisite. Knowledge is often
messier than can be represented in a simple hierarchy or lattice and network
representations are needed. Cognitive science has shown that cognition has
network-like aspects (Collins & Loftus 1975). Goldstein's (1982) ITS uses a
Genetic Graph with relationships among procedural rules which represent the way
knowledge evolves while a student learns how to master a maze exploration game.
The relationships include explanation, generalization, analogy, and refinement, and
show how learning can follow knowledge pathways from abstract (simple) to more
refined, from deviation to correction, and from specialization to generalization.

Most of the authoring systems incorporate hierarchical or network-like topic
representations. They differ in the types of topics and topic relationships used.
Brusilovsky (this Volume) says that most adaptive hypermedia systems use "is-a"
and/or "part-of" relationships. LAT, REDEEM, and RIDES use simple hierarchical
representations with one of two relationship types. "Instructional units" in RIDES
are in a hierarchy of sub-tasks. XAIDA has associative information (facts) related
as "subparts" in the "Physical Characteristics" shell; casual reasoning relationships
in its "Theory of Operation" shell, linked procedural steps in its "Procedures" shell,
and a discrimination net (fault tree) in its 'Troubleshooting" shell. Within the
Physical characteristics shell parts are related using: part-of, function, location, and
connected-to. DNA incorporates hybrid network structure that borrows from classic
semantic networks and GOMS production rule networks to represent several
knowledge types and relationships in a unifying formalism (it also seems to be the
only system that has strengths or weights associated with its topic links). Its
relationship types include: procedural-part, next-step, conditional-step, causes, and
part-of. IRIS uses these relationships between its learning units: prerequisite,
procedural (next-step, if/then decision), conceptual (is-a and part-of); theoretical
(cause-effect) and precondition. CREAM uses separate networks for three classes
of objects. "Capabilities" (similar to our "topics") are related with these
relationships: analogy, generalization, abstraction, aggregation, and deviation.
"Objectives" are related using: mandatory prerequisite, desirable prerequisite,
supporting (or "pretext"), and aggregation. Resources are related using: analogy,
abstraction, case, utilization, assistant, and equivalence.

Our goal in KBT-MM is to have a meta-level system that is compatible with all
of the above, not a specific system that incorporates all of the topic types and link
types.

D. Representing buggy knowledge. Many of the theories and instructional
systems mentioned above include some representation of buggy knowledge and a
method for remediating it. Buggy knowledge, such as misconceptions and buggy

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 451

skills or rules, is usually represented in a form similar to its corresponding
performance knowledge, but with additional properties and relationships that allow
the buggy knowledge to be diagnosed and remedied.

Relatively few authoring systems seem to incorporate misconceptions and bugs.
XAIDA stores "misconception" facts. Ontologies developed for the Eon system use
misconceptions, procedural bugs, and erroneous facts. Model Tracing Tutors (see
Ritter et al. in the Volume) store buggy procedural rules.

E. Beyond networks to more structured knowledge. Above we argued for
the need to include an additional level of (or levels) of structure beyond network
representations. We proposed Topic Levels as such a structure, but there are many
possibilities (the Topic Level idea is an inclusive and general framework, but some
systems use schemes too complex to be incorporated into Topic Levels.). Topic
Levels allow the tutorial to distinguish particular levels, methods, or modes of
teaching within the topic. We describe two uses for Topic Levels seen in authoring
tools: task levels and behavioral objective levels.

To distinguish task levels IDLE breaks a an inquiry topic or problem into these
steps: learning the problem context, gathering information from sources, gathering
data from instruments, abstracting and manipulating data, drawing conclusions, and
communicating conclusions. SimQuest allows for several 'assignment types:"
performance, investigation/explaination, specification, and optimization.
Instructional Simulator has templates specifying different types of patterned
exercises: describe parts, identify and locate parts, demonstrate ("Simon sys"
method), practice, and perform. XAIDA has 11 such exercise templates, and
RIDES has 25.

Several systems (IRIS, DNA, CREAM, Eon, Instructional Simulator, and
XAIDA) incorporate an important principle from instructional design theory: that a
subject matter can be learned at several levels corresponding to different types of
behavioral objectives. For example consider the procedure for starting a car. We
can distinguish at least three types of objectives: the procedural steps can be
memorized, the procedural skill can be mastered, and the purpose and causal
relationships of its components can be understood. We can distinguish "topics" such
as "starting a car" from the types of objectives. For example, Merrill's content
matrix (Merrill 1983) incorporates "performance levels" called remember, apply,
and create. This is handled in different ways by different authoring systems, but
overall it calls for an additional level of structure beyond the network. In CREAM
concepts can be identified, recognized, classified, and generalized. IRIS uses the
levels defined by Bloom as described above.

Again, our goal is to propose an overall structure (Topic Levels) that is
compatible with most (but not all) of the schemes described. In KBT-MM
Presentation Contents are assigned to the Topic Levels within each topic, not
directly to the topics. This is compatible with the authoring systems mentioned
above.

F. Knowledge attributes. Several theories point to the need to assign
pedagogically relevant attributes to topics, such as importance and difficulty.
Bruner's (1966) theory of learning focuses on how we form new concepts,
categories, and rules by induction from examples or cases along with the analysis of

452 T. MURRAY

key features. This indicates that not only knowledge chunks and their relationships,
but also their pedagogically relevant properties, need to be represented. Case-based
tutors, such as some of the Goal-Based Scenarios described in (Schank et al. 1994),
which use knowledge bases of example objects or situations, search the knowledge
base for appropriate cases based on case attributes. Many ITSs incorporate topic
attributes into tutoring strategy decisions. Adding attributes to topics gives them
internal structure like "frames" or "schemes" in AI knowledge representation.

Brusilovsky (in this Volume) notes how frame-like knowledge representations
are used in many adaptive hypermedia systems to represent internal topic structure.
The components or parts in Instructional Simulator, RIDES, and XAIDA have
properties associated with them. REDEEM and other systems include topic
difficulty levels.

G. Lessons and instructional objectives. Lesgold (1988) points out that the
concept of prerequisite is often inadequate, since whether one topic is a prerequisite
of another may be a function of the learning goal of a particular session, rather than
a static relationship between topics. He proposes a goal lattice structure that
captures the different "viewpoints" of a curriculum structure that result from
different instructional goals (or perspectives).

Leinhardt and Greeno (1986) distinguish lesson structure and subject matter as
the two fundamental systems of knowledge needed for teaching, where subject
matter knowledge is used by the lesson structure, the later being in charge of
tailoring a session for an individual student.

For most systems, including adaptive hypermedia systems, the learning goals are
a sub-set of the topic or concept network. RIDES and Eon store goals in lesson
objects. IRIS, and CREAM represent learning objectives in terms of behavioral
objectives, and described above. Van Marcke's (1992) GTE framework makes a
similar distinction between content and instructional goals.

The above principles support the following prescriptions which are used in the
KBT-MM framework. Separate "what to teach" into modular units independent of
how to teach it (item A above). Use network formalisms for knowledge units with
directed links allows for the creation of hierarchies and lattices and less canonical
frameworks (C). Include a number of different types of nodes and links (B).
Knowledge units should have pedagogically relevant properties associated with
them (F). Learning goals for a tutorial session should be represented separately
from instructional content (G). ITSs should be able to distinguish among different
types of knowledge (B), and also represent buggy knowledge (D), so that teaching
strategies can be predicated on knowledge classes. There is an indication that
exclusive use of a network formalism does not provide enough knowledge
structuring complexity, and that more complex data structures (such as Topic levels)
will often be needed to support multiple levels or modes of instruction for each topic
(E).

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 453

3.5 Student Model and Teaching Strategies in KBT-MM

Theories from instructional design and cognitive psychology have much to say
about the declarative organization of content and knowledge, and this has influenced
ITS design. In contrast, though there are many prescriptions for how and when to
present content, there is little agreement nor general understanding of how
procedural teaching strategies should be formally represented or implemented.

The inference method used by the student model is left unspecified in KBT-MM,
but the Decision Architecture does suggest some constraints on what types of
information the student model should represent. The student model can include
values for objects at all five layers of the architecture (as in Eon's student model).
That is, it can store an overlay value for lessons, topics, each level within a topic,
presentations, and events. A given implementation can opt out of including some
layers in the Student model, for example, the simplest models will include only
Topic values (and perhaps will also save the history of all user interactions at the
Event layer). For the objects in each layer the student model can have one or more
values, for example: mastery, confidence level, was-attempted, was-shown-to-the-
student, number-given, etc. KBT-MM specifies the five layers, but leaves the
particular vocabulary of value types for each object to the Ontology. The value of
objects at each level is a function of the values at the next lower level. For example,
a Topic's values are a function of the values of its topic levels.

Teaching strategies are part of the "control structure" of an ITS-- the algorithms
or rules that determine how the ITS will behave and respond to the student.
Embedded in this control structure will be numerous individual decisions related to
deciding what, when, and how to teach. KBT-MM leaves it up to the
implementation whether the control structure is, for instance, blackboard-based or
production rule based. In any case, at an conceptual level we can say that there are
many decisions to be made in the form of "IF X then Y" rules. The antecedents
inspect internal states, which must be about the student (e.g. IF the student
understands the current topic…), the history of the session (e.g. IF greater than 6
hints have been given for the previous three activities…), or the nature of the
current content (e.g. IF the current topic is a difficult fact…). The bulk of the
consequents are tutorial actions (e.g. …THEN give a hint, THEN begin the next
topic, THEN show the topic summary) or student model inferences (e.g. THEN
increase student model confidence for mastery of the current topic level).

Thus, the vocabulary of terms used in the antecedents and consequences of
teaching strategies come from the decision architecture. The vocabularies for
student model values and domain model details that are defined in the Ontology. It
is possible and preferable to design authoring tools such that tutoring strategies
reference these and only these pedagogical building blocks. I.E. no new objects or
terms need to be introduced beyond the framework described in the Sections above.

3.6 Ontology Objects

As explained in Chapter 17, the goals of usability, flexibility, and power are often at
odds with each other, since systems tailored for specific domains can include

454 T. MURRAY

powerful non-generic representational and instructional methods. Attempting to
create a single ITS framework that includes the capabilities of many existing
systems would, at the least, result in a very complex and obscure system. In
contrast, we have tried to identify a minimum underlying framework that is neutral
regarding domain or instructional theory. KBT-MM includes a highly generic, yet
underspecified, Layered Decision Architecture that has many aspects left open to
particular implementations. Ontology objects specify the remaining complexity for
each implementation. The decision architecture specifies the structure of objects
and control. Ontologies in KBT-MM are simply sets of terms that specify the types,
levels, or attributes that are allowed for the objects in a particular incarnation of the
KBT-MM.

In general, an ontology is a particular way of describing the world (or some
domain); it is a scheme for conceptualizing the objects and relationships in a domain
(Gruber 1993).3 I use the term "ontology object" for a data object which defines a
conceptual vocabulary for the system. Relating this to the Decision Architecture
above, an ontology could specify the following: lesson properties, topic types, topic
link types, topic properties, and topic levels. The ontology could also specify the
types of values used by the student model, as described above. As an example of
Ontology use, consider the ontology that was created for the Eon Statics Tutor. It
defined topic types Fact, Concept, Procedure, and Misconception, and topic links
Prerequisite, Generalization, and SubConcept. A (fictitious) tutor for
Manufacturing Equipment might have topic types Safety, Maintenance, Operation,
Theory, and Common Failures, and topic links SubPart and SimilarPart. Ontologies
can be generic and reusable, for example, an ontology developed for one science
tutor should be usable (perhaps with slight modifications) for other tutors with
similar pedagogical characteristics (e.g. instruction at a predominantly conceptual
level).

Most tutoring systems fall into one of a number of loose classes, each addressing
specific types of cognitive skills or knowledge types. Example domain classes
include: conceptual information, factual information, problem solving skills, design
skills, procedural skills (such as maintenance), inquiry and experimentation skills,
equipment diagnostic skills, customer contact (and other interpersonal) skills,
sensory-motor skills, association and pattern recognition skills, and
argumentation/hypothesis generation skills. Ontology objects may be reused across
tutors within a domain class. Reigeluth (1983) prescribes that each domain be
assigned an "organizing content type:" conceptual, theoretical (principle-like), or
procedural, that best fits the characteristics of the domain and the instructional goals.
His "elaboration theory of instruction" specifies methods for selecting and
sequencing content according to the organizing content type. Others have
categorized domains according to whether their structure is predominantly

3The ARPA Knowledge Sharing Effort (KSE) described in (Gruber 1993) is exploring the use
of standardized ontologies for sharing knowledge in knowledge-based systems. Our work is
related, but currently we are focusing on ontologies that support knowledge authoring rather
than sharing, and we focus on pedagogical knowledge, where the KSE deals with
performance knowledge.

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 455

procedural, historical, structural, causal, teleological, inferential, etc. Domain types
have characteristic links between topics, for example analogy, physical-part, a-kind-
of, etc.4 Classifying domains according to organizing content type, and creating
ontology objects for each organizing content type, would help bootstrap ITS
construction.

Several other ITS projects address ontologies. Some of these, for example (e.g.
(Mizoguchi et a. 1996) and (Van Marcke 1992)) have a goal to define a generic
conceptual vocabulary that can be used do describe describing all of the objects,
attributes, and methods needed to design a tutor. The scheme usually includes
hierarchical sets of ontologies, with a core ontology defining terms generic to all
instruction, and set of domain-specific ontologies (for example, for mathematics or
automobile maintenance) to be loaded on top of the core ontology. Some projects
also include authoring tools for developing and extending these ontologies, Our use
of ontologies is different than, yet compatible with, these efforts. In KBT-MM the
Ontology is an open structure that allows the designer to define a vocabulary for a
particular tutor. The goal of these other projects is to define a complete vocabulary
that is independent of any specific implementation--it is almost a conversational
vocabulary defining the concepts needed to define or describe an ITS and its
behavior. In the case of KBT-MM the Ontology framework is tied closely to the
architectural framework, as its purpose is to allow the author to specify
implementation-specific attributes of the primary objects defined by the architecture
(topics, presentations, student models, etc.). The two methods are compatible
because, once other research teams successfully define vocabularies, elements of
these vocabularies can and should be used for KBT-MM Ontologies (especially if
the vocabularies are standardized or in common use).

Moving the discussion from representational frameworks to authoring tools, an
authoring tool that conforms to KBT-MM needs a tool for defining the ontology. In
authoring an ITS an ontology must be defined first, and then the authoring tools
must adapt to the specifics of the ontology. For example, if the ontology specifies
that the allowed knowledge types for the tutor are Facts and Principles, then the tool
for creating topics should only allow these two types of topics to be created.

3.7 Meta-Authoring Special Purpose Authoring Systems

Even with tools that are relatively generic, powerful, and usable, the process of
starting from scratch to build an ITS is still a formidable one. Not surprisingly, in
our research with the Eon system we consistently ran up against the classic
knowledge acquisition bottleneck (Hoffman 1987). Domain experts are usually
good at sketching out student interactions, lessons to teach particular topics, and
responses to specific student behaviors, but articulating knowledge at a more
abstract or generic level is difficult. The following ITS knowledge representation
tasks were inherently difficult for most subject matter experts:

4(Wenger 1987, pg. 331) describes several "justification types," such as structure,
functionality, and constraints, that could be used as topic links.

456 T. MURRAY

1. Ontology design. Defining the types of topics, topic links, and topic levels
for the Topic Ontology, and also defining the ontology of allowable values for the
student model.

2. Curriculum representation. Breaking the instructional material and goals up
into discrete components (topics) and providing relationships between these
components (topic links);

3. Strategy and diagnostic procedure representations. Representing teaching
strategies and procedures in a general way (e.g. how do we recognize that a student
is confused, and what is a reasonable general response to student confusion?);

4. Student model definition. Defining rules that express when a student knows
a topic, and labeling or characterizing the student's level of knowledge.

In our experience, it takes a knowledge engineer, a person skilled in the elicitation
and representation of these types of knowledge, to work with the subject matter
expert (the teacher) to build these aspects of the system. Highly usable authoring
tools help, since they help the teacher visualize the information and participate more
intimately in design process, once the knowledge engineer has broken the ice and
explained things once or twice.

Figure 4: Three Tiered Suite of Authoring Tools

One solution to the knowledge acquisition problem is creating special purpose
authoring tools, for example authoring tools for building ITSs that teach anatomy,
foreign policy, or verb conjugation. Authoring shells which are used to build tutors
for specific task types (Jona 1995, Sparks et al. in this Volume, and Bell in this
Volume) can, in principle, build tutors with more fidelity and depth than general
purpose tools. The depth vs. breadth tradeoff seems to imply that you can have one
but not the other, that 1) ITS authoring tools that can build powerful tutors that
closely match the pedagogical needs of a domain must have a narrow scope, and that
2) an all-purpose ITS shell, by necessity, must have a shallow knowledge
representation and the learning environment it creates will have little conceptual
fidelity (in comparison to special purpose tools).

Simplified Tools
for Teachers

Libraries of ontologies, SM
rules, interface templates,
general teaching strategies

Generic ITS Authoring Tool

‡
 E

as
e

of
 U

se
 ‡

Special Purpose
Authoring System}

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 457

Our approach is to build special purpose authoring systems on top of the generic
authoring system, so that the authoring tool becomes a "meta-authoring tool." This
would involve constructing libraries of pre-built components such as ontologies,
student model rules, and interface screens. Since some teaching knowledge is
general in nature (Van Marcke 1992, Jona 1995), default teaching strategies and
meta-strategies could also be provided. We could then provide sets of these
components tailored to facilitate building tutors for classes of domains or tasks. For
example, ITS authoring shells could be produced for science concepts, human
service/customer contact skills, language arts, and equipment maintenance
procedures. Instructional designers could immediately start constructing tutors in an
environment that supports and helps structure the knowledge acquisition process.

By using a meta-authoring approach, we hope to achieve a fair degree of fidelity
and depth, while maintaining usability and generality. Figure 4 illustrates the
potential for a three-tiered suite of authoring tools, using the Eon system as the
example base authoring system. At the first tier is a general purpose ITS authoring
system that requires moderate knowledge engineering and instructional design
expertise to use. At the second tier are special purpose ITS authoring systems (built
on top of the first tier system) that require minimal knowledge engineering and
instructional design expertise. The third tier involves tools for the average teacher
using an ITS in her class. At the third tier are a simplified subset of the authoring
tools, so that once an ITS is built, any teacher can customize it for a particular class
or group. For example, by modifying a hint's text, replacing a picture with a more
recent version, making a teaching strategy more verbose, or by changing a
prerequisite relationship between topics. This is important because some teachers
will be reluctant to use instructional systems that they can't understand or adapt.

4. SUMMARY OF KBT-MM

Below I will summarize our recommendations for the design and use of knowledge
based authoring tools using the KBT-MM conceptual model.

4.1 Domain and Curriculum Model

The fundamental conceptual entities in an ITS are the curriculum objects. The
representational framework should allow for, and the authoring tools should reify,
these objects in accordance with the following principles:

ß Represent instructional (teaching) strategies separately from domain
knowledge (i.e. use a "knowledge based paradigm").

ß Design for modularity and re-usability of content. I.E. whenever possible
content should be independent of the way it is used, and be able to be used
in multiple contexts.

ß Provide a representational formalism that is customizable and extensible.
The vocabulary of properties and building blocks used to conceptualize and

458 T. MURRAY

build a tutor should reflect the structures and assumptions inherent to the
particular domain and/or instructional style. KBT-MM does this through
the Ontology object. Below when the specification calls for
customizability, the tutor-specific aspects are intended to be specified in the
Ontology of that tutor.

ß Explicitly represent abstract pedagogical entities-- referring the knowledge
to be learned--from the concrete media which the student will see, read,
hear, and manipulate. In KBT-MM we call the knowledge units "topics"
and the concrete media "contents."

ß Provide separate data objects to store the individual user (and tutor) events
that happen during presentations, for example: "hint given", "correct
answer" "poured water into the flask." KBT-MM calls these objects
"events".

ß Represent topics and their relationships in a semantic network, which we
call a "topic network." Allow for a customizable vocabulary of topic types
and link types.

ß Provide methods for assigning pedagogically relevant attributes, such as
difficulty, importance, and is-qualitative, to topics. The vocabulary of
these attributes should be customizable.

ß Provide a method for an additional level of structure inside of topic
objects, as this will facilitate knowledge representation in most domain. In
KBT-MM we do this by allowing topic to have any number of "topic
levels" within them. The number and names of the topic levels should be
customizable. Example topic levels are: introduction, examples, easy-
level, practice, review.

ß Provide methods for associating domain knowledge objects and media
content objects to instructionally relevant categories or purposes, e.g.
"explanation," "summary," "hint," "difficulty," so that teaching strategies
can be designed using building blocks at the pedagogical level of
abstraction. The KBT-MM design does this through a number of features,
including customizable topic levels.

ß Provide a method for defining the objectives and context of particular
tutorial sessions. In KBT-MM we do this with Lesson objects, which, at
the minimum, specify goal topics and the default teaching strategy for a
particular assignment of the ITS to a group of students.

ß KBT-MM specifies a "five layered decision model" that shows the logical
and control relationships between the major objects in the curriculum
model: Lessons, Topics, Topic Levels, Presentations, and Events.

4.2 Student Model

The KBT-MM specifies the following for the Student Model representational
framework:

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 459

ß The student model is an overlay on the five types of objects in the decision
architecture. The types of values that can be assigned to each object (e.g.
mastery, number of times given, certainty) is customizable.

ß KBT-MM does not constrain the inference methods that are used to assign
values to curriculum overlay objects, but specifies that the value of objects
at each level is a function of the values at the next lower level.

ß Define topic types for buggy knowledge or misconceptions to allow these
to be recognized, diagnosed, and dealt with. The student model
accumulates evidence for this "incorrect" knowledge using methods
parallel to its regular topic diagnostic methods.

4.3 Teaching Model

The KBT-MM specifies the following for the Teaching Model representational
framework:

ß Allow the representation of instructional content and instructional
strategies separately.

ß Allow content to be generated and sequenced dynamically.
ß Allow authors to create generic and reusable teaching strategies that can

be used with different instructional content.
ß Allow instructional strategies to be predicated upon pedagogically

relevant characteristics of the content (e.g. whether a topic is a fact or a
concept; whether a topic level is difficult or easy).

ß Instruction decisions, if conceptualized as rules, have the objects,
properties, and ontology vocabulary as described above available for their
consequents (for example, running, showing, of "giving" a topic, lesson,
presentation, hint, etc.). Similarly, the properties of the student model and
of the curriculum model are available for rule antecedents (for example,
predicating a tutorial action on mastery of a topic, the type of topic, or how
many hints were given).

4.4 Authoring Tools

Finally, I summarize our recommendations regarding authoring tools that reify the
KBT-MM representational framework.

ß Provide visual reification for the concepts and structure of the underlying
representational framework. This relieves working memory load and assists
long term memory by providing memory cues. As a general rule, if some
aspect of the representational framework is too complex to create clear
visualization, then the framework may be too complex to expect non-
programmers to be authors. Multiple views or multiple representations of
the same structure are often needed to convey the full form and function of
a feature.

460 T. MURRAY

ß Provide tools that make it easy to browse, search for, and reference all
content objects. Include tools that make it easy to navigate among the
objects and tools.

ß Anchor usability on familiar authoring paradigms, and facilitate
evolution to more powerful paradigms. It is useful to have a look and feel
similar to off-the shelf CAI authoring tools, and to provide features which
allow a smooth transition from traditional authoring paradigms to authoring
more powerful intelligent tutors. (For example, Eon's interaction editor and
flowline editor have many surface similarities to off-the-shelf multimedia
authoring tools.)

ß Provide features powerful enough to author generative content and to
create new presentations on the fly based on parameters of the current state.
Similarly, provide productivity tools that capitalize on repetitive or
template-like content (as in Eon's Presentation Content Editor). Other
useful features include scripting languages, the ability to assign interface
component attributes to methods or expressions, and the ability to have
attribute values reference each other.

ß Provide WYSIWYG tools that allow easy movement between authoring
content and test-running the tutorial to facilitate rapid build-and-test
iterations. If interface template screens are used, the tools need to help the
author comprehend the distinction between the fixed items of a tutorial
screen and the database-driven variable items.

ß Facilitate an opportunistic design process. ITS authoring tools should
allow for top down (starting with the abstract curriculum structure), bottom
up (starting with specific screens and content), and opportunistic (switching
between top down and bottom up as needed) design of ITSs.

ß Allow for interface extensibility. Little is said in this paper about how
authoring tools should support the design of ITS interfaces, but regardless
of the method used, it is recommend that the system allow plug-ins or APIs
such that interfaces of arbitrary complexity can be incorporated, and the
author is not limited to building all learning environments from scratch
using the primitive graphical objects available in the authoring tool. (An
example is the "custom widgets" feature in Eon.)

ß Provide tools to create the Ontology first, and subsequently the interface
should reify the Ontology. Once the Ontology for a tutor is defined, the
forms, menu selections, etc. of the authoring tool should reflect the
vocabulary of the ontology. For example, if the Ontology defines the types
of relationships allowed between topics then the tool that allows topics to
be linked together should show exactly this list of relationships.

ß Create special purpose authoring tools for increased usability and
productivity. Generic authoring tools having Ontology objects can be used
as "meta-authoring tools" to build special purpose authoring tools for
particular classes of intelligent tutors.

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 461

5. ISSUES AND LESSONS LEARNED IN REPRESENTING PEDAGOGICAL
KNOWLEDGE

This Section covers important issues that we have encountered when working with
instructors trying to explicitly represent pedagogical knowledge for intelligent
tutors. Human knowledge does not exist in neatly defined, clearly named packages-
--it is inherently complex, densely connected, fuzzy, and ambiguous. Yet to use
knowledge in AI systems we try to represent it in individual units with definite
structure and properties. The tension between the organic nature of knowledge and
our need to modularize it leads to a number of unavoidable issues for ITS
knowledge representation, which I discuss below, along with how we dealt with
these issues in our research using the Eon system.

5.1 How Generic Can Teaching Strategies Be?

In Chapter 17 Section 5.3 I discuss limitations to what we can expect authors to be
able to conceptualise and perform. In addition There are also limits to what we can
reasonably expect in the level of sophistication of tutoring strategies. In our design
for KBT-MM we are aiming for a particular level of generality in teaching
strategies. To illustrated, consider the progression of hypothetical teaching
strategies or rules from very specific to very general, where each item is intended to
be an abstraction or reason encompassing the previous one:

1. If button #1 on screen #5 is pushed, then go to screen # 12.
2. If question-12 is answered wrong, then give explanation-5.
3. If the student gets a question wrong twice, then give a canned explanation.
4. If the student is very confused, then give an additional level of feedback.
5. Give students several opportunities to think about each situation so that
they may learn from their mistakes, then scaffold feedback of increasing
levels of specificity.
6. Learning happens through an active process of concept formation while
trying to account for new information within in the context of previous
knowledge.

This progression of hypothetical ITS tutoring rules goes from the trivial to the
impossible. The first two items illustrate the low-level coupling of state testing and
action found in (non-intelligent) CAI. The third item illustrates a type of tutorial
reasoning that is typical of today's intelligent tutors. A tutor using this rule must
keep a record of the student's behavior, but the reason why the rule is applicable is
not explicit. The fourth item, though less common, is well within the state of the art
for ITSs. A tutor using this rule must have abstract models of the student's mental
state and the tutoring process. A diagnostic strategy must infer the level of
"confusion" from student behavior (such as number of times asking for help), and
the appropriate interpretation of "feedback" must be inferred based on the current
state of the tutorial session. The fifth item states a pedagogical belief or strategy,
and represents the principle behind the previous rule. It could be operationalized

462 T. MURRAY

in a limited way but is not precise enough to be part of a robust ITS (with today's
technology). The final item is based on a theory---a psychological assumption. It
represents the reason for the previous principle and the purpose for the rule above it.
Representing and using knowledge at this level of abstraction is clearly out of the
reach of current technology.

5.2 Topic Modularity and Interdependence

When knowledge in a domain is organized into modular units, which are then
sequenced flexibly according to instructional strategies, a number of unavoidable
problems arise. First, it is difficult to encode the knowledge "between" the topics,
which can be about how they are related to each other, or the emergent knowledge
that comes from understanding topics together. Reigeluth (1983) and Lesgold
(1988) refer to this as the "glue" in a curriculum (Lesgold also refers to this as "non-
linearities" between topics).

The issue of curricular "glue" is not as much a natural property of the content, as
an emergent phenomena that happens when instructional designers break up the
content or domain knowledge into discrete chunks. In Eon we deal with this glue in
several ways. First, Topics can have Topic Levels such as "Introduction" and
"Conclusion," which address how the topic relates to other topics that are likely to
precede or follow it in most curriculum paths. Second, Topic Types called
Composites and Synthesizers can be used. A Composite topic is one that represents
the whole which is more than the sum of its parts. For example, our Static Tutor's
Linear Equilibrium (LE) topic had "sub-part" links to LE Intuition, LE Concept, and
LE Principle. Knowing Linear Equilibrium involves knowing each of these parts,
and also how the parts fit together in an understanding of static situations.

"Synthesizer" is a term used by Reigeluth (1983) for instructional components
that interrelate and integrate instructional units. In Eon we can define a topic type
called Synthesizer. One possible strategy using synthesizers relates two topics the
student has learned: after a topic is taught check whether a synthesizer connects it
with another mastered topic, and if so, teach the synthesis material. Another possible
strategy connects new information with existing information before the new
information is presented: before a topic is taught, check whether a synthesizer
connects it with an already known topic and, if so, present the synthesis material.

Lesson objects are another mechanism for dealing with curricular "glue". Since
Lesson objects can specify a sequence of goal topics, they can also be used to insure
that certain information is presented between topics, to compare and contrast them.

The second modularity problem is that topics are often interdependent. For
example, in our Statics tutor, the student has to know something about Gravity to
fully understand Linear Equilibrium, yet some understanding of Linear Equilibrium
is prerequisite to learning about Gravity. Topic Levels organized by mastery,
combined with levels of prerequisites, allow us to deal with this in Eon. We can
assign content to topics at various levels (e.g. easy, moderate, and difficult) and
allow prerequisite links such as Familiarity, Easy Prerequisite, and Moderate
Prerequisite. Thus we can specify that the easy level of Linear Equilibrium should

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 463

precede learning the difficult level of Gravity, and that the easy level of Gravity
should precede the difficult level of Linear Equilibrium. This method simulates
spiral teaching, in which the same topics are taught from successively more difficult
perspectives (see (Murray & Woolf 1992) for more discussion of spiral teaching).

5.3 Knowledge Structure and Complexity

In order to create structured and purposeful instruction the instructional designer
organizes her understanding of a domain into common "epistemic forms" (Collins
& Ferguson 1993) such as hierarchies, tables, networks, scripts, and schemas, and as
complex nested constructs using these basic forms. Halff (1988) notes that "the
sequence of exercises and examples should reflect the structure of the (knowledge)
being taught and should thereby help the student induce the target (knowledge)".
ITS authoring must be supported with tools that allow clear visualization of the
knowledge structures, and more esoteric or complex structures are difficult to
comprehend and author. In KBT-MM we have devised a system that accommodates
many but not all possibilities.

Having Topic Levels within the topics allows a significant increase in
representational power over strictly network representations, without a large
increase in complexity. For example, we have simulated Merrill's Performance
Content Matrix (Merrill 1983) by assigning content types to Topic Types (fact,
procedure, skill, etc.), and performance levels to Topic Levels within each topic
(remember, use, apply, create, and meta-knowledge). If we tried to do this with
topic networks without Topic Levels, there would be a confusing proliferation of
related Topics, one for each level of each Topic, i.e. we would need topics called
Gravity-memorize, Gravity-use, etc. Levels of mastery (e.g. easy, difficult) can be
encoded using topic levels, as can different pedagogical functions for a topic. For
example, a teaching strategy can tell a topic to "teach" itself, "summarize" itself,
"define" itself, and "test" for its knowledge if the Ontology defines these topic
levels.

Additional analysis of a domain seems to always lead to additional complexity.
For example, in our study of authoring the Statics Tutor we discovered numerous
different perspectives on the material (Murray 1991 pg. 218), most of which we did
not attempt to implement. For example, Newton's' Third Law can be taught by
presenting questions which progress from existence (does a force exist here?), to
direction (what direction is the force?), to relative magnitude, to quantitative
questions. This material can also be taught by showing a progression of example
situations using different surface features, e.g. with objects hanging, falling, rolling,
colliding, etc. It can also be taught by dealing with first horizontal forces, then
vertical, then both, then rotational forces. Each of these methods has some
instructional merit. Some are within the capacity of the topic-network and topic-
level to represent, and some would require a more complex scheme if the
representational formalism is to clearly reflect the structure of the domain
knowledge.

464 T. MURRAY

5.4 Non-Independence of Content and Strategies

Unfortunately, it would seem that little in ITS authoring is as simple "as advertised."
One of the fundamental characteristics of ITSs, and what characterizes ITS
authoring tools from CAI authoring tools, is the separation of content from teaching
strategies--the separate representation of what to teach/present from how and when
to teach/present it. However, it turns out that it is epistemologically impossible to
completely separate them. In fact, the meaning of most of the conceptual objects
used to define content depends inextricably on the strategy that is implemented to
use those objects. For instance: what is the meaning of "prerequisite?" At a vague
level the term specifies that one thing should be known before another is taught.
But at a more precise level, for a particular ITS, the meaning is most strongly related
to what a prerequisite relationship causes to happen. Are prerequisites always
taught first? Are the parts of a subtopic also prerequisites of the topic? If you have
to "know" all prerequisites before being taught a topic, do you have to know them
completely, or only at an introductory level? The answers to these questions are
found in the teaching strategies (and perhaps in the student model rules). One
might be able to design the content knowledge base without making any
assumptions about teaching strategies, but more likely, the decision about whether
one topic should really be called a "prerequisite" of another will depend on knowing
the answer to these types of questions. As another example, consider the decision of
whether to classify a topic as a "concept". At a vague level we may have a meaning
for "concept," but at a deeper level whether we classify a topic as a concept or
something else is closely related to how the system will behave as a result of that
categorization.

All this does not change our vision for effective authoring tools, but is offered as
a note of caution to designers. Content can still be authored to be flexible and re-
usable. But every ITS design group must engage in an ongoing process of
grounding the meaning of the objects and terms that they use. An authoring tool, by
its very nature or through accompanying documentation, can suggest meanings or
ranges of interpretation for these terms, but this does not alleviate the necessity of
meaning-grounding within each design team. It means that designing content
ontologies and tutoring strategies may need to be an iterative process, and that when
decisions are made about ITS conceptual building blocks, that the designer should
note what this reveals about assumptions related to teaching strategies.

6. CONCLUSIONS

Authoring tools can have a variety of purposes and intended users, and their design
must account for tradeoffs among four overall goals: usability, power, flexibility,
and generality. This paper describes a reference model or generic framework (KBT-
MM), plus a set of guidelines and lessons learned, with the goal of supporting the
creation and use of ITS authoring tools that maximize among these four goals
(especially for pedagogy-oriented tutors). KBT-MM is in a sense an attempt to
answer the question: is there a common underlying framework that could be used to
describe all or most ITSs or ITS authoring systems? In terms of the systems

PRINCIPLES FOR KNOWLEDGE BASED TUTOR AUTHORING SYSTEMS 465

described in this book it does so with only moderate success, because of the
diversity of systems represented. However I believe that it does capture the
essential or fundamental elements of the systems that fall within our definition of
knowledge-based tutors. If compared to any particular knowledge based tutor
authoring tool one might say that KBT-MM is fine as far as it goes, but leaves out
all of the most interesting parts. This is precisely because what one find most
interesting about a particular system are the parts that are particularly innovative or
distinctive. The KBT-MM is offered as a reference model which could be used to
compare systems and as a starting point for the design of new systems.

The issues involved in building an ITS can be subtle, and a trained knowledge
engineer may always be needed on the ITS design team. But with appropriate
representational formalisms and tools that visually reify the conceptual structures
involved, learning how to be a good ITS knowledge engineer can be made
accessible to many more people, not just to computer programmers and AI
scientists. Also, once a trained person gets the primary structures set up, an
instructional designer with much less training can continue to fill in the content.

Future plans for this line of work include working with researchers who work in
the area of performance-oriented systems, especially model-tracing tutors, to extend
or combine the principles outlined in this paper to that domain. I have also applied
many of these principles to the design of an authoring tool for adaptive hypermedia,
as described in (Murray 2002).

7. REFERENCES

Anderson, J. (1983). The Architecture of Cognition. Harvard Univ. Press: Cambridge, MA.
Ausubel, D.P. (1960).The use of advanced organizers in the learning and retentions of meaningful verbal

material. J. of Educational Psychology 51, 267-272.
Betz, F. Suthers, D., Wheeler, T. (1997). Architecture Abstraction Hierarchy Reference Model. IEEE

Learning Technology Standards Committee draft document.
Bloom, B. (1956). Taxonomy of Educational Objectives, Vol. 1. David McKay Co., New York.
Bruner, J. (1966). Toward a Theory of Instruction. Harvard Univ. Press, Cambridge, MA.
Burton, R. R., & Brown, J. S. (1982). An Investigation of Computer Coaching for Informal Learning

Activities. In Sleeman & Brown (Eds.), Intelligent Tutoring Systems. New York, NY: Academic
Press.

Clancey, W. (1982). Tutoring rules for guiding a case method dialogue. In Intelligent Tutoring Systems,
D. Sleeman & J. Brown (Eds.), Academic Press 1982, pp. 201-225.

Collins, A. & Ferguson, W. (1993). Epistemic Forms and Epistemic Games: Structures and Strategies to
Guide Inquiry. Educational Psychologist, 28(1), 25-42.Collins, A.M. & Loftus, E.F. (1975). A
spreading activation theory of semantic processing. Psychological Review 82(6), 407-428.

Gagne, R. (1985). The Conditions of Learning and Theory of Instruction. Holt, Rinehard, and Winston.
New York.

Ginsburg, H. & Opper, S. (1979). Piaget's Theory of Intellectual Development. Prentice-Hall:
Englewood Cliffs, NJ.

Goldstein, I. P. (1982). The Genetic Graph: A Representation of the Evolution of Procedural Knowledge.
In Sleeman & Brown (Eds.), Intelligent Tutoring Systems. New York, NY: Academic Press.

Gruber, T. (1993). Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In
Formal Ontology in Conceptual Analysis and Knowledge Representation , Guarino & Poli (Eds.).
Kluwer Academic Publishers.

Halff, H. (1988). Curriculum and Instruction in Automated Tutors. In Foundations of Intelligent Tutoring
Systems, Polson & Richardson (Eds.). Lawrence Erlbaum Assoc., Hillsdale, NJ.

466 T. MURRAY

Hoffman, R. (1987). "The Problem of Extracting the Knowledge ofExperts From the Perspective of
Experimental Psychology." AI Magazine, pp. 53-67, Summer 1987.

Jona, M. (1995). Representing and re-using general teaching strategies: A knowledge-rich approach to
building authoring tools for tutoring systems. In AIED-95 workshop papers for Authoring Shells for
Intelligent Tutoring Systems.

Kyllonen & Shute (1988). “A Taxonomy of Learning Skills." Brooks Air Force Base, TX: AFHRL
Report No. TP-87-39.

Leinhardt, G., & Greeno, J. (1986). The Cognitive Skill of Teaching. In Journal of Educational
Psychology, Vol. 78 No. 2, 75-95.

Lesgold, A. (1988). Toward a Theory of Curriculum for Use in Designing Instructional Systems. In
Mandl & Lesgold (Eds.), Learning Issues for Intelligent Tutoring Systems, Springer-Verlag, New
York.

Merrill, M.D. (1983). Component Display Theory. In Instructional-design theories and models: An
overview of their current status, pp. 279 - 333. C.M. Reigeluth. (Ed), Lawrence Erlbaum Associates,
London.

Mizoguchi, R., Sinitsa, K., Ikeda, M. (1996). Knowledge Engineering of Educational Systems for
Authoring System Design. In Proceedings. of EuroAIED-96, pp. 593-600. Lisbon.

Murray, T. (1991). Facilitating Teacher Participation in Intelligent Computer Tutor Design: Tools and
Design Methods. Ed.D. Dissertation, Univ. of Massachusetts, Computer Science Tech. Report 91-95.

Murray, T. (2002). MetaLinks: Authoring and Affordances for Conceptual and Narrative Flow in
Adaptive Hyperbooks. International Journal of Artificial Intelligence in Education, Vol. 13.

Murray, T. & Woolf, B. (1992). Tools for Teacher Participation in ITS Design. In Frasson, Gauthier, &
McCalla (Eds.) Intelligent Tutoring Systems, Second Int. Conf. , Springer Verlag, New York, pp.
593-600.

Reigeluth, C. (1983). The Elaboration Theory of Instruction. In Reigeluth (Ed.), Instructional Design
Theories and Models,. Lawrence Erlbaum Assoc., Hillsdale, NJ.

Schank, R., Fano, A. Bell, B. & Jona, M. (1994). The Design of Goal-Based Scenarios. Journal of the
Learning Sciences, Vol. 3 No. 4.

Schoening, J. & Wheeler, T. (1997). Standards--The key to educational reform. IEEE Computer, March
1997, pp. 116-117.

 Van Marcke, K. (1992). Instructional Expertise. In Frasson, C., Gauthier, G., & McCalla, G.I. (Eds.)
Procs. of Intelligent Tutoring Systems '92. Springer Verlag, Berlin.

VanLehn, K. (1987). "Learning One Subprocedure per Lesson," Artificial Intelligence, Vol. 31.
Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann.
Westcourt, K., Beard, M. & Gould, L. (1977). Knowledge-based adaptive curriculum sequencing for

CAI: application of a network representation. Proceedings of the National ACM Conference, Seattle,
Washington, pp. 234-240.

Winne P.H., 1991. Project DOCENT: Design for a Teacher's Consultant. In Goodyear (Ed.), Teaching
Knowledge and Intelligent Tutoring. Norwood, NJ: Ablex.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation and
the Advance Research Projects Agency under Cooperative Agreement No. CDA-
940860.

